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Preface 

Integral transforms are among the main mathematical methods for the 
solution of equations describing physical systems, because, quite generally, 
the coupling between the elements which constitute such a system-these can 
be the mass points in a finite spring lattice or the continuum of a diffusive or 
elastic medium-prevents a straightforward "single-particle" solution. By 
describing the same system in an appropriate reference frame, one can often 
bring about a mathematical uncoupling of the equations in such a way that 
the solution becomes that of noninteracting constituents. The "tilt" in the 
reference frame is a finite or integral transform, according to whether the 
system has a finite or infinite number of elements. The types of coupling which 
yield to the integral transform method include diffusive and elastic interactions 
in "classical" systems as well as the more common quantum-mechanical 
potentials. 

The purpose of this volume is to present an orderly exposition of the 
theory and some of the applications of the finite and integral transforms 
associated with the names of Fourier, Bessel, Laplace, Hankel, Gauss, 
Bargmann, and several others in the same vein. 

The volume is divided into four parts dealing, respectively, with finite, 
series, integral, and canonical transforms. They are intended to serve as 
independent units. The reader is assumed to have greater mathematical 
sophistication in the later parts, though. 

Part I, which deals with finite transforms, covers the field of complex 
vector analysis with emphasis on particular linear operators, their eigen
vectors, and their eigenvalues. Finite transforms apply naturally to lattice 
structures such as (finite) crystals, electric networks, and finite signal 
sets. 

Fourier and Bessel series are treated in Part II. The basic theorems 
are proven here in the customary classical analysis framework, but when 

vii 
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introducing the Dirac S, we do not hesitate in translating the vector space con
cepts from their finite-dimensional counterparts, aiming for the rigor of most 
mathematical physics developments. The appropriate warning signs are 
placed where one is bound, nevertheless, to be led astray by finite-dimensional 
analogues. Applications include diffusive and elastic media of finite extent 
and infinite lattices. 

Fourier transforms occupy the major portion of Part III. After their 
introduction and the study of their main properties, we turn to the treatment 
of certain special functions which have close connection with Fourier trans
forms and which are, moreover, of considerable physical interest: the attrac
tive and repulsive quantum oscillator wave functions and coherent states. 
Other integral transforms (Laplace, Mellin, Hankel, etc.) related to the 
Fourier transform and applications occupy the rest of this part. 

"Canonical transforms" is the name of a parametrized continuum of 
transforms which include, as particular cases, most of the integral transforms 
of Part III. They also include Bargmann transforms, a rather modern tool 
used for the description of shell-model nuclear physics and second-quantized 
boson field theories. In the presentation given in Part IV, we are adapting 
recent research material such as canonical transformations in quantum 
mechanics, hyperdifferential operator realizations for the transforms, and 
similarity groups for a class of differential equations. We do not explicitly 
use Lie group theory, although the applications we present in the study of the 
diffusion and related Schrodinger equations should cater to the taste of the 
connoisseur. 

On the whole, the pace and tone of the text have been set by the balance 
of intuition and rigor as practiced in applied mathematics with the aim that 
the contents should be useful for senior undergraduate and graduate students 
in the scientific and technical fields. Each part contains a flux diagram 
showing the logical concatenation of the sections so as to facilitate their use 
in a variety of courses. The graduate student or research worker may be 
interested in some particular sections such as the fast Fourier transform 
computer algorithm, the Gibbs phenomenon, causality, or oscillator wave 
functions. These are subjects which have not been commonly included under 
the same cover. Part IV, moreover, may spur his or her interest in new 
directions. We have tried to give an adequate bibliography whenever our 
account of an area had to stop for reasons of specialization or space. 
References are cited by author's name and year of publication, and they are 
listed alphabetically at the end of the book. A generous number of figures 
and some tables should enable the reader to browse easily. New literals are 
defined by":="; thusf:= A means/is defined as the expression A. Vectors 
and unargumented functions are denoted by lowercase boldface type and 
matrices by uppercase boldface. Operators appear in "double" type, e.g., 
IQ, Ill, and sets in script, e.g., f!l, ~- A symbol list is included at the end. 
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Exercises are used mainly to suggest alternative proofs, extensions to the 
text material, or cross references, usually providing the answers as well as 
further comments. They are meant to be read at least cursorily as part of the 
text. Equations are numbered by chapter. 

I would like to express my gratitude to Professor Tomas Garza for his 
encouragement and support of this project; to my colleagues Drs. Charles P. 
Boyer, Jorge Ize, and Antonmaria Minzoni among many others at IIMAS, 
Instituto de Fisica, and Facultad de Ciencias, for their critical comments on 
the manuscript; and to my students for bearing with the first versions of the 
material in this volume. The graphics were programmed by the author on 
the facilities of the Centro de Servicios y Computo and plotted at the Instituto 
de Ingenieria, UNAM. Special acknowledgment is due to Miss Alicia 
Vazquez for her fine secretarial work despite many difficulties. 

Ciudad Universitaria, Mexico D.F. Kurt Bernardo Wolf 
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Part I 

Finite-Dimensional 
Vector Spaces 
and the Fourier Transform 

In this part we develop the mathematical framework of finite-dimensional 
Fourier transforms and give the basics of two fields where it has found 
fruitful application: in the analysis of coupled systems and in communication 
theory and technology. 

Chapter 1 deals with complex vector analysis in N dimensions and leads 
rather quickly to the tools of Fourier analysis: unitary transformations and 
self-adjoint operators. The uncoupling of lattices representing one-dimen
sional crystals and electric RLC networks is undertaken in Chapter 2. We 
examine in detail the fundamental solutions, normal modes, and traveling 
waves for first-neighbor interactions in simple crystal lattices and extend 
these to farther-neighbor, molecular, and diatomic crystals. The Fourier 
formalism is also used to describe the analytical mechanics of these systems: 
phase space, energy, evolution operators, and other conservation laws. 
Chapter 3 introduces convolution and correlation, sketching their use in 
filtering, windowing, and modulation of signals and their detection in the 
presence of background noise. The workings of the fast Fourier transform 
(FFT) computation algorithm are given in Section 3.3. Finally, in Section 
3.4, some properties of Fourier series and integral transforms (Parts II and 
III) are put in the form of corresponding properties of the finite Fourier 
transform on vector spaces whose dimension grows without bound. 

Chapters 2 and 3 are independent of each other and can be chosen 
according to the reader's interest. With the first choice, Sections 1.6 and 1.7 
will be particularly needed. The understanding of Chapter 3, on the other 
hand, does not require basically more than Sections 1.1-1.4. Before going 

1 
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2 Part I · Finite-Dimensional Fourier Transform 

to the following parts in this text, the reader may find Section 3.4 useful. 
Table 1.1, which gives the main properties of the finite Fourier transform, is 
placed at the end of Chapter I. 

Chapter 1 

Chapter 3 
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I 

Concepts from Complex 
Vector Analysis and the 
Fourier Transform 

In this chapter we present the basic properties of complex vector spaces and 
the Fourier transform. Sections 1.1 and 1.2 prepare the subject through the 
standard definitions of linear independence, bases, coordinates, inner 
product, and norm. In Section 1.3 we introduce linear transformations in 
vector spaces, emphasizing the conceptual difference between passive and 
active ones: the former refer to changes in reference coordinates, while the 
latter imply a "physical" process actually transforming the points of the 
space. Permutations of reference axes and the Fourier transformation are 
prime examples of coordinate changes (Section 1.4), while the second
difference operator in particular and self-adjoint operators in general 
(Section 1.5) will be important in applications. We give, in Section 1.6, the 
elements of invariance group considerations for a finite N-point lattice. 
Finally, in Section 1.7 we examine the axes of a transformation and develop 
the properties of self-adjoint and unitary operators. 

If the reader so wishes, he can proceed from Section 1.4 directly to 
Chapter 3 for applications in communication and the fast Fourier transform 
algorithm. The rest of the sections are needed, however, for the treatment of 
coupled systems in Chapter 2. 

1.1. N-Dimensional Complex Vector Spaces 

The elements of real vector analysis are surely familiar to the reader, so 
the material in this section will serve mainly to fix notation and to enlarge 
slightly the concepts of this analysis to the field '{} of complex numbers. 

3 
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4 Part I • Finite-Dimensional Fourier Transform [Sec. 1.1 

1.1.1. Axioms 

Let cl> c2 , ••• be complex numbers, elements of~. and let fl> f2 , ••• be 
the elements of a set "''" called vectors and denoted by boldface letters. We 
shall allow for two operations within "1'": 

(a) To every pair f1 and f2 in "Y, there is an associated element fa in "Y, 
called the sum of the pair: fa = f1 + f2. 

(b) To every f E"''" {"f element of "''"") and every c E ~. there is an 
associated element din r, referred to as the product off by c. 

With respect to the sum, "''" must satisfy the following: 

{al) Commutativity: f1 + f2 = f2 + f1 , 

(a2) Associativity: {f1 + f2) + fa = f1 + {f2 + fa), 
(a3) "''" must contain a zero vector 0 such that f + 0 = f for all fEr, 
(a4) For every fEr, there exists a (-f) E"''" such that f + (-f) = 0. 

With respect to the product it is required that -r satisfy 

{bl) l·f=f, 
(b2) c1(c2f) = (c1c2)f. 

Finally, the two operations are to intertwine distributively, i.e., 

(cl) c{f1 + f2) = d 1 + cf2, 
(c2) (c1 + c2)f = c1f + c2f. 

The last requirement relates the sum in~ with the sum in "Y. We use the same 
symbol "+" for both. Immediate consequences of these axioms are Of = 0 
and ( -l)f = -f. 

1.1.2. Linear Independence 

Except for allowing the numbers cl> c2, . . . to be complex, the main 
concepts from ordinary vector analysis remain unchanged: A set of (nonzero) 
vectors fl> f2, ... , fN is said to be linearly independent when 

N 

L Cnfn = 0 -<=> Cn = 0, n= 1,2, ... ,N. (1.1) 
n=l 

If the implication to the right does not hold, the set of vectors is said to be 
linearly dependent. A complex vector space "''" is said to be N-dimensional 
when it is possible to find at most N linearly independent vectors. We affix 
Nto "''"as a superscript: "f'"N. Let {&n};:'= 1:={&1,&2, ... ,&N} be a maximal 
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set oflinearly independent vectors, called a basis for "f'"N. We can then express 
any f E "f'"N as a linear combination of the basis vectors as 

N 

f = 2 lnEn, (1.2) 
n=l 

where In E 'iff is the nth coordinate off with respect to the basis {r.n}~=l· Iff 
has coordinates Un}~=l and g coordinates {gn}~=t. then the coordinates of a 
vector h = af + bg will be hn = aln + bgn for n = 1, 2, ... , N, as implied 
by (1.1) and the linear independence of the basis vectors. The vector 0 has 
all its coordinates zero. 

1.1.3. Canonical Representation 

Any two N-dimensional vector spaces are isomorphic, as we need only 
establish a one-to-one correspondence between the basis vectors. A most 
convenient realization of {r.n}~=l is given through the canonical column-vector 
representation 

1 0 11 
0 0 h 
0 0 

i.e., f = 
fa 

£1 = E2 = , ... , EN= 
' 

0 0 IN-1 
0 IN 

(1.3) 

Throughout Part I, we shall consider finite-dimensional complex vector 
spaces. 

Exercise 1.1. Map the complex vector space "f'"N onto a 2N-dimensional real 
vector space (i.e., only real numbers allowed). You can number the basis vectors 
in the latter as en R := en and e1 + n := ien, n = 1, 2, ... , N. (Any other choice?) How 
do the coordinates of a vector f E "f'"N relate to the coordinates of the correspond
ing vector in the real space? 

For economy of notation we shall henceforth indicate summations as in 
(1.2) by .Ln, the range of the index being implied by the context. Double 
sums will appear as .Ln.m• etc. If any ambiguities should arise, we shall 
revert to the full summation symbol. 

1.2. Inner Product and Norm in fN 

In this section we shall generalize the inner (or "scalar") product and 
norm of ordinary vector analysis to corresponding concepts in complex 
vector spaces. 
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6 Part I • Finite-Dimensional Fourier Transform (Sec. 1.2 

1.2.1. Inner Product 

To every ordered pair of vectors f, g in "f"N, we associate a complex 
number {f, g), their inner product. It has the properties of being linear in the 
second argument, i.e., 

(1.4) 

and antilinear in the first, 

(1.5) 

where the asterisk denotes complex conjugation. Such an inner product is 
thus a sesquilinear (" 1 t linear") operation: "f"N x "f"N ~ "C. We shall assume 
that the inner product is positive; that is, {f, f) > 0 for every f #- 0. 

1.2.2. Orthonormal Bases 

Two vectors whose inner product is zero are said to be orthogonal. A 
basis such that its vectors satisfy 

{ 1 ifn = m, 
(en, Em)= Sn,m== 0 ifn #- m (1.6) 

is said to be an orthonormal basis. It can easily be shown as in real vector 
analysis, by the Schmidt construction, that one can always find an ortho
normal basis for "f"N. Conversely, we can define the inner product by demand
ing (1.6) for a given basis and then extend the definition through (1.4) and 
(1.5) to the whole space "f"N. For two arbitrary vectors f and g written in 
terms of the basis, we have 

{f, g) = (f/nt:n, ~/mt:m) 

= ~ gm(~fnen, em) 

= "'.Jn*gm(t:n, Em) 
n,m 

It is now easy to verify that 

[from (1.2)] 

[from (1.4)] 

[from (1.5)] 

[from (1.6)] 

{f, f) ;;:: 0, (f, f) = 0 ~ f = 0, 

{f, g) = {g, f)*. 

(1.7) 

(1.8) 

(1.9) 

[In fact, Eqs. (1.4), (1.8), and (1.9) are sometimes used to define the inner 
product in a vector space: the two sets of axioms are equivalent whenever 
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an orthonormal basis exists. This is the case for finite N-dimensional spaces 
but not always when N is infinite. In the latter, the definition (1.4)-(1.8)-(1.9) 
is used.] 

1.2.3. Coordinates 

The nth coordinate of a vector fin the orthonormal basis {s11};:'= 1 is 
easily recovered from f itself through the inner product: Performing the 
inner product of a fixed Em with Eq. (1.2), we find 

Hence, we can write 

f = 2: s .. (s11 , f). (1.11) 
II 

1.2.4. Schwartz Inequality 

Two vectors f1 and f2 were said to be orthogonal if (f1, f2) = 0. On the 
other hand, two vectors g1 and g2 are parallel if g1 = cg2, c E <iff, in which case 

(gl> g2) = c*(g2, g2) = c- 1(gl> gl) = [c*c- 1(gl> g1)(g2. g2)]112, (1.12) 

where, note, lc*c- 1 1 = 1. For l(f, g)l, zero is a lower bound, while, in the 
event f and g are parallel, l(f, g)l = [(f, f)(g, g)]112. These are the extreme 
values, as stated in the well-known Schwartz inequality: 

l(f, g)l 2 :::;; (f, f)(g, g). (1.13) 

We can prove (1.13) as follows. Consider lhe vector f - cg. Then, because 
of (1.8), 

0 :::;; (f- cg, f- cg) = (f, f) - c(f, g) - c*(g, f) + lcl 2(g, g). (1.14) 

Now choose (for g :f 0) 

c = (f, g)* /(g, g). (1.15) 

Replacement in (1.14) and a rearrangement of terms yield (1.13). 

1.2.5. Norm 

The norm (or length) of a vector f E "f'N is defined as 

(1.16) 
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It is a mapping from "f"N onto f!J+ (the nonnegative halfline), having the 
properties 

llf II ~ o, !If II = o ¢> c = o, 

~cfJJ = JcJ JJCJJ, 

~f + gJJ ~ llfll + JJgJJ. 

(1.17) 

(1.18) 

(1.19) 

Equations (1.17) and (1.18) are easily proven from (1.8) and (1.4)-(1.5), 
while Eq. (1.19) is the triangle inequality, which states, quite geometrically, 
that the length of the sum of two vectors cannot exceed the sum of the 
lengths of the vectors. It can be proven from (1.14), setting c = -1, that 

0 ~ JJf + gJJ 2 = llfll 2 + 2 Re(f, g) + JJgJJ 2 

~ JJfll 2 + 2J(f, g)J + JJgJJ 2 (from Re z ~ JzJ) 

~ JJfjj 2 + 2JJCJJ·JJgJJ + JJgJJ 2 [from (1.13)]. (1.20) 

The square root of the second and last terms yields Eq. (1.19). 

Exercise 1.2. From (1.14) show that 

/If - gJJ ~ I llfll - J/g//1. (1.21) 

This is another form of the triangle inequality. 

We have obtained the properties of the norm, Eqs. (1.17)-(1.19), as 
consequences of the definition and properties of the inner product. The 
abstract definition of a norm, however, is that of a mapping from "f"N onto 
f!J+, with properties (1.17)-(1.19). It is a weaker requirement than that of an 
inner product and quite independent of it. The definition (1.16) only repre
sents a particular kind of norm. Again, in infinite-dimensional spaces one 
may define a norm but have no inner product. 

Exercise 1.3. Prove the polarization identity 

(f, g) = -H//f + gl/ 2 - 1/f- gl/ 2) + i!(l/f- igl/ 2 - 1/f + igl/ 2). (1.22) 

Note that this identity hinges on the validity of (1.16). It cannot be used to define 
an inner product from a norm. 

Exercise 1.4. Define the complex angle between two vectors by 

cos e := (f, g)/1/fl/·1/g/1, (1.23) 

Show that this restricts 0 to a region /sinh 81 / .,. /sin 88 / .,. 1. 



www.manaraa.com

Sec. 1.3] Chap. 1 • Complex Vector Analysis/The Fourier Transform 9 

1.3. Passive and Active Transformations 

In this section we shall introduce two kinds of transformations on the 
coordinates of vectors in "f"'N, those which arise from a change in the basis 
used for the description of the space, referred to as passive transformations, 
and active transformations produced by operators which bodily move the 
vectors in fN. Although the resulting expressions for the two kinds of 
transformations are quite similar, the difference in their interpretation is 
important. 

1.3.1. Transformation of the Basis Vectors 

Consider the complex vector space fN and the orthonormal basis 
{en};:'= 1 (henceforth called the e-basis, for short). Out of the e-basis we can 
construct the set of vectors 

n = 1, 2, ... , N, (1.24) 

where Vnm E '??. The question of the linear independence of the vector set 
(1.24) can be posed as follows. Let i\, c2 , ••• , eN be a set of constants such that 

0 = 2 CmEm = 2 Cm Vnmen = 2 Cnen, (1.25) 
m m,n 

where Cn = Lm cmVnm· Now, the vectors of the e-basis are linearly indepen
dent, so cn = 0 for n = 1, 2, ... , N. For this to imply that all the em = 0, 
m = 1, 2, ... , N, it is necessary that the matrix v = II vnmll have a non
vanishing determinant. Thus, if det V # 0, the linear independence of the 
e-basis implies the linear independence of theN vectors in (1.24). The latter 
are then a basis as well. Henceforth it will be called the £-basis. The e-basis 
will not in general consist of mutually orthogonal vectors, but 

(en, em) = 2 ( vjnei> vkme,J 
j,k 

= L Vk*n Vkm = (VtV)nm• 
k 

(1.26) 

where yt = vr* is the transposed conjugate or adjoint of the matrix V and 

(Vt)nm = Vr::'n· 

1.3.2. Passive Transformations 

We can regard the matrix V = II Vnmll as effecting a change of basis for 
fN: a passive transformation whereby the description of the vectors of fN 

in terms of the e-basis is replaced by their description in terms of the £-basis. 
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Fig. 1.1. Passive transformation V 
of a (two-dimensional) vec
tor space. Its description in 
terms of a basis { E,} is 
replaced by its description 
in terms of a transformed 
basis {e,}. The vectors f in 
the space are unchanged. 

Let f E "f'"N be a (fixed) vector with coordinates fn, n = 1, 2, . .. , N, relative 
to the e-basis and coordinates fm , m = 1, 2, . .. , N, relative to the £-basis. 
Then (see Fig. 1.1) 

LfnEn = f = Lfm£m = LfmVnmEn (passive). (1.27) 
n m ~m 

The first and last members of this equation, due to the linear independence 
of the basis vectors, yield 

fn = L Vnmfm, fm = L (V-l)mnfn· (1.28) 
m n 

The matrix v- 1 exists as Vis assumed to be nonsingular (det V # 0). 

Exercise 1.5. Let the coordinates off relative to the €-basis be lm [i .e., second 
and third members of Eq. (1.27)]. Performing the inner product with En and using 
(I.26), find lm in terms of (en, f). 

Exercise 1.6. Using the result of Exercise 1.5, define the set of vectors £n° 
(n = I, 2, ... , N) so that fn = (€n°, f). Show that this defines a basis for "f""N. It 
is called the basis dual to the £-basis, since (prove!) (en, em 0 ) = On.m• If the €-basis 
is orthonormal, then in ° = En (n = I, 2, ... , N). 

Exercise 1.7. Express (f, g) in terms of the coordinates of f and g in the 
£-basis. 

1.3.3. Active Transformations 

Active transformations are produced by operators A mapping "f'"N onto 
"f'"N, which transform the vectors of the space as f ~---+ f' = Af. We shall 
assume these operators to be linear, i.e., 

A(af + bg) = aAf + bAg. (1.29) 

The linearity requirement allows us to find the transformation undergone by 
every vector in the space when we know the way the vectors in a given basis 
(say, the e-basis) are transformed. Let 

m = 1, 2, ... , N, (1.30) 

and define the N 2 constants 

Anm := (En, E~) = (En, A em). (1.31) 
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Using Eq. (1.11) withE~ in place off, we find 

(1.32) 

which is formally identical to (1.24) with Anm in place of Vnm· The inter
pretation of (1.32) as a linear active transformation, however, requires that 
the vectors f E "f/"N and the basis E undergo the same transformation; that is, 
the coordinates off' in the new basis t:' continue to be fn, n = 1, 2, . . . , N. 

Now, denoting by f~ (n = 1, 2, . .. , N) the coordinates off' with respect to 
the original £-basis, we have 

(active), (1.33) 
n m m,n 

and this implies 

(1.34) 

so the coordinates of f transform as a column vector under the matrix 

A = IIAnmll · 

1.3.4. Operators and Their Matrix Representatives 

As a consequence of the construction (1.31), we see that any linear 
operator A can be represented by a matrix A, acting on the column-vector 
canonical realization (1.3). The matrix A was determined uniquely from the 
linear operator A . Conversely, A is uniquely determined by A since the 
transformation of the basis vectors ( 1.32) specifies the transformation of any 
vector in the space. See Fig. 1.2. 

We shall now see that this one-to-one correspondence between linear 
operators and N x N matrices holds under sum and product of the corre
sponding quantities. We define the linear combination of two operators 

r 

Fig. 1.2. Active transformation A of a (two-dimensional) vector space. All vectors
basis vectors included-are changed. As the transfotmation is linear, however, 
the coordinates off' = A f in the transformed basis {t:;} = {At:1} are the same 
as those off in the original basis. 
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C = aA + biB, quite naturally, as 

(a A + b!B)f := aAf + b!Bf. 

Now let A, B, and C be the representing matrices. Then, using (1.31), 

Cnm = (en, (aA + b!B)em) = a(En, AEm) + b(En, IBEm) 

= aAnm + bBnm, 

so that C = aA + bB. Similarly, for the product []) = AlB, 

(AIB)f := A(IBf). 

(1.35) 

(1.36) 

(1.37) 

The correspondence with the representing matrices D, A, and B can be 
established using (1.31), (1.11) for IBem, and the linearity of the operators 
involved, 

Dnm = (En, AIBEm) = (En, A .f eiek, IBem)) 

= 2 (em Ae~c)(E~c, IBem) = 2 AnkBkm, 
k k 

so that D = AB. 

1.3.5. Representations in Different Bases 

(1.38) 

We shall use passive transformations when a given system lends itself 
to a more convenient description in terms of a new set of coordinates. Active 
transformations, on the other hand, will describe, for instance, the time 
evolution of the state vector of a system. Note that active transformations of 
"f/N should not depend on the basis used for the description of the space. 
Indeed, the representation of A by a matrix A = IIAnmll in (1.31) was made 
relative to the e-basis, but under any (passive) change of basis to, say, the 
£-basis, the same operator A would be described by a different matrix A = 

IIAnmll whose elements are 

Anm = (en, A em) = 2 { VjnEh A VkmEk) 
j,k 

= 2 VfnA1~cV~cm = (VtAV)nm· (1.39) 
j,lc 

Exercise 1.8. Show that 

(Af, Ag) = 2.J,:(AtA)mngn. (1.40) 
m,n 

Do the same in terms of coordinates in a nonorthonormal basis. 

Exercise 1.9. Define the operator At as that having a matrix representation 
At in some (orthonormal) basis. We call At the adjoint of A. Show that 

(f, Atg) = (Af, g). (1.41) 
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Show that this definition of A,.t does not depend on the matrix representation and 
that, for any other basis, At = (A)t. 

Exercise 1.10. Let A and IB be linear operators, C = aA + biB and OJ = 
AlB. Find the representing matrices C and fi in the (in general nonorthogonal) 
£-basis. 

Exercise 1.10 should convince the reader that by far the simplest descrip
tion of vector space operations is in terms of orthonormal bases. In fact, 
from now on we shall deal exclusively with these bases. This imposes severe 
restrictions on the allowed V in (1.24), which will be examined below. Ifthe 
reader wants to deepen this necessarily brief account of vector spaces, inner 
products, and linear transformations, he may find useful the excellent text by 
Bowen and Wang (1976, Chapters 0-5). 

1.4. Unitary Transformations: Permutations and the Fourier Transform 

1.4.1. Definition of Unitarity 

A transformation V which maps an orthonormal basis of the space 
"f'"N, e, to another orthonormal basis £ is called a unitary transformation. 
The necessary and sufficient condition for this to happen can be seen from 
(1.26) to be 

L: VtnVkm = Sn,m> i.e., yty = 1, 
k 

(1.42) 

where 1 is the N x N unit matrix. Such a matrix V is also called unitary, and 
clearly satisfies v-l = yt: Its inverse equals its adjoint. As now both the E
and £-bases are orthonormal, it follows that 

(1.43) 

This is the Parseval identity between the coordinates of two vectors f and g in 
two bases related by a unitary transformation. (Compare with the result of 
Exercise 1.7.) 

1.4.2. Groups of Unitary Matrices 

Geometrically, a unitary transformation can be seen as a rigid rotation 
and/or reflection in a complex N-dimensional space: the angle 0 between any 
two vectors [Eq. (1.23)] is unchanged. Note that, as det Vt = (det V)*, it 
follows from (1.42) that 

jdet VI = 1 (V unitary). (1.44) 

One general property of unitary transformations is that they constitute a 
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group. This will be defined now. Consider the set o/1 of unitary matrices. 
Then, as will be verified below, 

(a) V1o V2eo// ~ v1-v2eo//. 
(b) V1o V2, V3 E o/1 ~ (V1· V2)· Va = V1·(V2· Va). 
(c) There exists a unit element E E "'I such that E· V = V for all V E o/1. 
(d) For every v E o/1, there exists a v-1 E "'I such that vv-1 = E. 

Abstractly, if the set o/1 satisfies (a)-( d), it is said to constitute a group under 
the product operation " · ". In our case, " ·" is matrix multiplication, and we 
can verify (a): Let V! = V1- 1 and VJ = V2 1 ; then (V1V2)t = Vtvl = 
V2 1V:L 1 = (V1V2)- 1 . (b) Complex matrix multiplication is always associa
tive. (c) The unit matrix 1 satisfies 1t = 1 = 1- 1 and thus belongs to o/1; it 
has the property 1· V = V, so we identify E = 1. (d) (V- 1)t = ytt = V = 
cv-1)-1. 

We conclude that the set of unitary matrices constitutes a group under 
multiplication. Although we shall use the notions of groups sparingly in this 
text, showing on occasion that sets of operations or objects have the group 
property under the appropriate product and drawing some immediate 
consequences, we should emphasize that group theory has been one of the 
fastest growing branches in applied mathematics. For the reader interested 
in further study on this field, we can suggest the books by Hamermesh (1962) 
and Miller (1972). 

Exercise 1.11. Show that a vector space has the structure of a group under 
the "+" operation. The unit element is the zero vector. 

We shall now examine two particularly important unitary transforma
tions: permutations and the Fourier transformation. 

1.4.3. Permutations 

A permutation p of the basis vectors { £1o £ 2, ... , eN} (or of any set of 
numbered objects) is a transformation to a new basis {&b 62, ... , &N} = 
{ev<I>• ev<2>, ... , ev<N>}, where only the order of the elements in the set is 
changed. The string of numbers p(l),p(2), .. . ,p(N) is a permutation p of 
1, 2, ... , N, and p(m) = p(n) <o> m = n. 

1.4.4. Representing Permutations by Matrices 

We can display p by the symbol 

( 1 2 
p(l) p(2) 
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which on any numbered set replaces the mth element by the p(m)th one. The 
order of the columns in this symbol is irrelevant. Such a permutation is 
achieved in (1.24) by a matrix P = IIPnmll whose mth column has a single 
nonzero element-of value l-in the p(m)th row, i.e., 

[p( p 2 
p(l) p(2) 

(1.45) 

so that em = ev<ml· The inverse p- 1 of the permutation p permutes the set 
p(l),p(2), ... ,p(N) back to 1, 2, ... , N. This is achieved by 

N ) -1] = [p(p(l) p(2) 
p(N) nm 1 2 

p(N))] 
N nm 

. . . N )t] 
· · · p(N) nm' 

(1.46) 

so that ev<ml = em. As the elements of P and p- 1 are real, it was concluded in 
(1.46) that p- 1 =pt. It follows that the permutation matrix (1.45) is unitary 
and that the permutation of basis vectors is a unitary transformation in "f""N. 

The product of two permutations PI> p 2 is a permutation p 3 since, 
applied to any numbered set on the right of the symbols, 

(1.47) 

Note that the product of two permutations is not commutative in general. 
The identity permutation e = (;;:) which leaves every element in a numbered 
set in its position is obviously a permutation represented in (1.45) by the 
unit matrix. Finally, as the inverse p- 1 of a given permutation p is also a 
permutation represented in (1.46) by p- 1 = pt, the set of all permutations is 

a group. We shall denote it by '"N· It has N! elements. As permutations are a 
subset of the group of unitary transformations, they are said to be a subgroup 

of the latter. 

Exercise 1.12. Note that, since the matrices involved are real, det P = ± 1. 
Show that the matrices representing transpositions of two elements [i.e., 
(~ ~ ::: ~ ::: fc ::: ~), where only k and I are exchanged] have a determinant equal 
to -1. 

Exercise 1.13. Show that the product of two transpositions which have one 
element in common has the form of a three-cycle [i.e., n ~ ::: ~ ::: ;,. ::: ~ ::: ~), 

where only k, I, and mare exchanged]. Show that the matrix representing a three
cycle has determinant + 1. 



www.manaraa.com

16 Part I • Finite-Dimensional Fourier Transform (Sec. 1.4 

Exercise 1.14. Consider the real space "Y3 for definiteness. Show that per
mutations with determinant + 1 are rotations of the coordinate axes, while 
permutations with determinant -1 involve reflections across planes. 

Exercise 1.15. For N > 3, one can produce four-cycles, etc. (uptoN-cycles), 
from the product of a three-cycle, etc. [up to (N - 1)-cycle], and a transposition 
with one element in common. Show that n-cycles are represented by matrices with 
determinant ( -l)n+l. When this is + 1 they can be realized as rotations of the 
coordinate axes in N-space. 

Exercise 1.16. Show that all permutations represented by matrices (1.45) 
with determinant + 1 form a subgroup of the permutation group. Show that those 
with determinant - 1 do not. 

1.4.5. The Fourier Transformation 

The unitary transformation which is the prime subject of this part is the 
Fourier transformation, defined in "f/N by the matrix F = IIFmnll with elements 

Fmn := N- 112 exp( -27rimn/N) = Fnm· (1.48) 

We can verify directly that (1.48) is a unitary transformation, i.e., 

(FtF)mn = '2_F~"Fnk = N-l '2_exp[-27rik(n- m)/N] = Om,n· (1.49) 

" " 
Using the geometric progression formula with b + I terms 

{(I x)-lxa(I xb+1) 
a + a+l + + a+b _ ' X X ... X -

b +I, 
X =I= I, 
X= I, 

(1.50) 

and letting x = exp[ -27ri(n - m)/N], a= I, and b = N- I, we see that 
for m =I= n, x =I= I, and the sum in (1.49) adds to zero, while for m = n, 
x = 1, and it adds toN. 

1.4.6. Coordinates in the e- and cp-Bases 

From the above it follows that the coordinates of a vector fin two bases 
related by the Fourier transformation are given by (1.28), with F- 1 = Ft by 

fn = N- 112 Lim exp(27rimnfN), (1.51a) 
m 

fn = N- 112 2._/m exp( -27rimnfN). (1.5Ib) 
m 

The set {/n}~=l is said to be the (finite) Fourier transform of the set Un}~=l 
and the latter, the inverse Fourier transform of the former. In our approach, 
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we want to emphasize, they are the coordinates of the same vector f in two 

bases. 
The reasons for regarding the Fourier transformation as a particularly 

important unitary transformation should become clear in the applications of 

Chapters 2 and 3. Meanwhile, we reserve the tildes in Eqs. (1.5Ia) and (1.5Ib) 

for Fourier transforms, and we shall call the corresponding basis (called the 

e-basis in Section 1.3) the q>-basis. Explicitly, 

q>n = N- 112 2 Bm exp( -2TTimnfN), (1.52a) 
m 

Bn = N- 112 2 q>m exp(2TTimnfN), (1.52b) 
m 

(1.52c) 
n n 

Clearly, the mth coordinate of q>n in the e-basis is Fmn· In Fig. I.3 we show 

the real and imaginary parts of these coordinates for N = 7. We have let m 

take on continuous values and have drawn them as dotted lines in the figure. 

1.4.7. Powers of the Fourier Transformation 

One of the properties of the Fourier transformation matrix (1.48) is 

that it is a fourth root of the unit matrix. Indeed, 

(F2)mn = 2 Fmi<Fkn = N- 1 2 exp[ -2TTik(m + n)/N]. (1.53) 
k k 

Using (1.50), we see that (I .53) equals 1 whenever m + n = Nor 2N, as then 

all the N summands are N - 1 . Hence, F2 is a matrix with I 's above the main 

antidiagonal and in the N-N position, with zeros elsewhere. In fact, it is a 

permutation 

F2 = p( I 
N-

2 

N-2 
N-2 N-I N)-· 

2 I N -. lo. 

We shalt call this the inversion matrix. Squaring (1.54), we find 

F4 = 1. 

(1.54) 

(1.55) 

Exercise 1.17. Decompose the coordinates of a vector f in "f/"N into their 
real and imaginary parts as fn = fnR + ifn1 and In = fnR + i/,.1. Relate these by 
(1.5la) and (1.51 b). 

Exercise 1.18. Associate to every vector fin "f/"N another vector f* whose 
coordinates in the E-basis are (f*)n = Un)*, the complex conjugates of the original 
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vector. Note that this cannot be produced by a linear operator. Show that, in the 
<p-basis, the coordinates off* are {f*)n = <lN-n)*. 

Exercise 1.19. Prove that the components of a vector f are positive if and 
only if their Fourier transforms are positive definite, i.e., 

In > 0 ¢> L Jm-m•ff!ffm• > 0 (1.56) 
m,m' 

for an arbitrary vector g with components ffm in the <p-basis. This is easy when you 
show that the second expression in (1.56) is N 112 .Lnlnlgnl 2 • The coordinates In 
are numbered modulo N (n = n mod N). 

1.5. Self-Adjoint Operators 

1.5.1. Definition of Adjunction 

We have seen that linear operators A producing active transformations 
in "f/N could be represented by matrices A. We define the adjoint of A, At, 
as that operator fulfilling 

(f, Atg) = (Af, g) (1.57) 

for every pair off, g E "f/N. Equation (1.57) defines At uniquely if it defines 
its matrix representative in a unique way. That this is so can be seen letting f 
and g be en and em (for n, m = I, 2, ... , N) and setting a matrix At to repre
sent At. Equation (1.57) then tells us that 

(1.58) 

so that At is indeed, as the notation suggested, the adjoint (transposed 
conjugate) of the matrix A. Now, Eq. (1.57) is independent of the basis used 
to describe the space, so this property is independent of the matrix realization 
of the operator (see Exercise 1.9). 

1.5.2. Self-Adjointness and Hermiticity 

One particularly important class of operators Is comprised of those 
which are equal to their adjoints, i.e., 

w =!HI. (1.59) 

Such operators are called self-adjoint. They are represented by hermitian 
matrices Ht = H. (The distinction between hermiticity and self-adjointness 
may be a matter of semantics for finite-dimensional spaces "f/N; it becomes 
important, though, for infinite-dimensional ones.) 
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1.5.3. The Second-Difference Operator/!:,. 

The operator which will occupy us through most of Chapter 2 is the 
second-difference operator /!:,. whose representing matrix in the e-basis is 

-2 1 0 0 0 1 

1 -2 1 0 0 0 

0 -2 1 

Jl·-.- 0 0 -2 (1.60) 

0 

0 0 -2 1 

1 0 0 1 -2 

Again, as the notation suggests, /!:,. is the finite-dimensional analogue of the 
Laplacian. As ll is manifestly hermitian (as well as real), /!:,. is self-adjoint. 

1.5.4. The/!:,. Operator Represented in the cp-Basis 

The matrix A representing /!:,. in the cp-basis can be found from (1.39), 
(1.48), and (1.60) as 

Limn = (FtflF)mn = N- 1 _2: 111k exp[21Ti(kn - jm)fN] 
j,k 

= N- 1 _2: ( -2 exp[21Tik(n- m)fN] + exp{21Ti[kn- (k + l)m]/N} 
k 

+ exp{21Ti[kn - (k - 1)m]fN}). (1.6la) 

The last step uses (1.60) explicitly. From the second and third summands we 
can extract factors exp( + 21TimfN), respectively, so that 

Limn= N-1[-2 + exp(-21TimfN) + exp(21TimfN)]_2:exp[21Tik(n- m)fN] 
k 

= [- 2 + 2 cos(21TmfN)]8m,n 

[see Eq. (1.49)]; hence A is seen to be a diagonal matrix: 

(1.6lb) 

(1.62a) 

(1.62b) 

In fact, the usefulness of the cp-basis is the property that /!:,. is represented in 
it by a diagonal matrix. This will be seen time and again in the following 
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sections. At the end of Section 1.7 we indicate how F is found by asking for 
the property (1.62a). 

Exercise 1.20. If the linear operator A is represented in the e- and <p-hases 
by matrices A and A, and similarly for IB, show that 

A+ il = (A+8), 

A.B = A:B. 
(1.63a) 

(1.63b) 

Exercise 1.21. Show that the product of two hermitian matrices is not 
necessarily hermitian. The set of these matrices therefore does not form a group. 

Exercise 1.22. Show that the matrix 11 in (1.60) has zero determinant and 
hence 11- 1 does not exist (nor does A - 1). This can be done using the fact that, 
in (1.62b), >.N = 0. Which subspace of "f"N is mapped on 0? 

Exercise 1.23. Show that the matrix representing A2 in the e-basis is 

6 -4 1 0 0 1 -4 

-4 6 -4 1 0 0 1 

-4 6 -4 0 

f12 = 0 -4 6 
(1.64) 

1 0 

0 0 6 -4 

0 -4 6 -4 

-4 0 0 -4 6 

Which matrix represents A2 in the <p-basis? 

Exercise 1.24. Show that, for 2p + 1 ~ N, flP is represented in the e-basis 
by the matrix /1P with elements 

(/1P)mn = ( -l)m-n+p( + Zp ) = (/1P)m,N-n = (/1P)N-m,n, (1.65) 
p m- n 

where (D is the binomial coefficient. Verify the cases p = 0, p = 1 [Eq. (1.60)], 
and p = 2 [Eq. (1.64)]. Show that AP = (li)n represents flP in the <p-basis, and 
find its elements. 

Exercise 1.25. Consider the projection operator IP'~c which maps every 
vector in "f"N to its projection along e~c. Show that this is represented in the e- and 
<p-hases by matrices with elements 

(P~c)mn = N- 1 exp[27Tik(m- n)/N]. 

These operators are self-adjoint. 

(1.66a) 

(l.66b) 
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Exercise 1.26. From the projection operators of Exercise 1.25, build (for N 
even) IE1 := 2:~!;1 IP'2k-1 and IE2 := 2:~!;1 IP'2k· Show that these are represented in 
the e- and <p-bases by 

The results (1.35) to (1.38) linking linear combination and product of 
operators with the corresponding operations between the representing 
matrices show that if Pn(x) is a polynomial of degree n in x, then the operator 
IB = P n(A) is well defined and represented by the matrices B = Pn(A) and 
B = Pn(A) = Pn(A), which are also well defined. [The last equality is a direct 
consequence of (1.63).] Now, if we allow n to grow without bound into an 
analytic function P(x) expressible as a Taylor series convergent in some region 
jxj < p, what happens with P(A)? If the result is a well-defined matrix, this 
will give us a working definition for the operator P(A). The functions P(x) 
we shall use later are of the type exp(ax), cosh bx, (sinh x)fx, while others 
such as (1 - x)- 1 are quite commonly used [see, for example, the book by 
Goertzel and Tralli (1960).] Thus assume that 

"' 
P(x) = L PnXn (1.68) 

n=O 

converges for jxj < p. Consider now the same series, replace x by the matrix 
A, and let a be the maximum of the absolute values of its matrix elements: 
IAnml ~ a. Then a bound for the matrix elements of A2 will be Na2 (the 
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equality will happen when a row of maximal elements IX of A meets a column 
of similar elements). Inductively, we see that a bound for the elements of 
An is N- 1(N1X)n, and hence a bound for the elements of P(A) is N- 1P(N1X) so 
that for IX < pfN, P(A) exists. For the exponential and hyperbolic functions, 
pis infinite, so P(A) exists for any A. Correspondingly, the operator P(A.) is 
defined. Note that if the constants Pn in (1.68) are real, as (A.t)n = (A.n)t, it 
follows that P(A. t) = P(A.)t. Hence, if IHI is self-adjoint, P(IHI) will be also. 

1.5.6. Multiplication and Commutation 

Although we can comfortably work with functions of matrices and 
operators, we have to be careful about their composition, since the rules of 
ordinary algebra may not apply when several matrices or operators are 
involved. Consider the well-known relation exp(a + b) = exp a·exp b for 
numbers a and b. The direct proof proceeds as follows: 

"' 1 Q) 1 
= 2 ---,am 2 1 b1 = expa·expb, 

m~o m. J~o I. 
(1.69) 

where in the third step we used a double-sum exchange relation. See Appendix 
C. The second step [expanding the binomial (a + b)n] is only true, however, 
if a and b commute, i.e., ab = ba, so that all powers of a can be put to the 
left and those of b to the right. This is not true for matrices A and B, which 
do not commute. [For a thorough treatment of such problems, called 
Baker-Campbell-Hausdorff relations, see the article by Mielnik and 
Plebafiski (1970).] The most we can say here is that Eq. (1.69) is valid for 
matrices A and B when these commute, as is the case when they are both 
diagonal matrices or when B is a multiple of A, i.e., 

exp(aA)·exp(bA) = exp[(a + b)A]. (1.70) 

This relation will be used often. 

1.5.7. Diagonalization and Exponentiation of Various Matrices 

The problem of actually exponentiating or obtaining any function of a 
matrix A is another matter. If A represents an operator A, it may be that in 
some basis A. is represented by a diagonal matrix A. This is the case for A, 
represented by fl. in the t:-basis [Eq. (1.60)] and by a diagonal matrix 2i in 
the <p-basis [Eq. (1.62)]. For self-adjoint and unitary operators this is 
developed in Section 1. 7 in some detail. Since any sum or power of diagonal 
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matrices is a diagonal matrix, its elements are given by the sum or powers 
of the original diagonal elements. If V is a transformation relating the 
representing matrices A and the diagonal A of A [see Eq. (1.37)], then P(A) 
can be explicitly calculated by 

P(A) = vv- 1P(A)vv- 1 = v(~/nV- 1Anv)v- 1 

= v[n~o Pn(V- 1AV)n]v- 1 = VP(A)V- 1. (1.71) 

Exercise 1.27. Using Eq. (1.71) as well as (1.60) and (1.62), show that 

IG 1 •0 •1('T) := exp(TA) 

is represented in the cp- and &-bases by 

(1.72a) 

G~.Cl,; 1(T) = [exp(n~)lmn = <>m.n exp(TAm), (1.72b) 

G;.·,Cl,; 1(T) = [exp(TA)lmn = N- 1 L exp(TAk) exp[2'1Tik(n - m)/N], (1.72c) 
k 

Am = -4 sin2(-rrm/N). (1.72d) 

The operator IG 1 •0 •1(T) will appear in Exercise 2.17 as the time-evolution operator 
for the finite-difference analogue of the heat equation. 

Exercise 1.28. From (1.60) it is obvious that Ln Llnm = 0 for m = 
1, 2, ... , N. Prove that Ln (AP)nm = 0 and 

L [exp(TA)lmn = 1, m = 1, 2, ... , N. (1.73) 
n 

Note that this property holds only for thee-basis, where A is represented by A. 
Innocuous as it seems, Eq. (1.73) will lead to the (discrete analogue of) total 
heat conservation (Exercise 2.18). 

Exercise 1.29. Noting that (sinh x)fx contains only even powers of x 
in its Taylor expansion, define 

Go,l,l(-r) = A -1/2 sinh -rA112. 

Show that this is represented in the cp- and &-bases by 

G-o 11( ) <> 1 · m',ri 'T = Omn - SID WmT 
Wm 

G!.1' 1(T) = N- 1 L wi; 1 sin wk'T exp[2'1Tik(n - m)/N] 
k 

Wm = (-..\m)112 = 2 sin('ITm/N). 

(1.73a) 

(1.73b) 

(1.73c) 

(1.73d) 

This operator will appear in Section 2.2. It is the time-evolution operator for the 
finite difference analogue of the wave equation. 
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Exercise 1.30. Prove that if H is a hermitian matrix, it generates a set of 
unitary matrices 

U(T) = exp(iTH) (1.74) 

with T real. Define thus unitary operators. They have the property 

(QJf, QJg) = (f, g) (1.75) 

for all f, g E "f/N. 

Exercise 1.31. Let A( T) be a matrix whose elements are differentiable 
functions ofT. Define the derivative of A(T) with respect to T as 

dd A(T) =lim e- 1[A(T + e)- A(T)] = A'(T). 
T £-+0 

(1.76) 

From this see that matrix differential calculus is similar to ordinary calculus. In 
particular, the Leibnitz rule 

; (AB) = A'B + AB', A= A(T), B = B(T) (1.77) 

holds. As commutativity does not hold, we must keep straight the order of the 
factors. 

Exercise 1.32. Let A - 1(T) be the matrix inverse to A(T). Show that 

; A -1 = -A-lA' A -1. 

Exercise 1.33. Regarding (1.74), show that 

d 
H = - i dT U(T)J,=o· 

(1.78) 

(1.79) 

IfU(T) is a unitary matrix, show that His hermitian. You will be using Eq. (1.78). 

Exercise 1.34. Show that every linear operator A can be written as 

(1.80) 

where D-!1 1 and D-!1 2 are self-adjoint. Equation (1.80) recalls the decomposition of 
an arbitrary complex number into a real and an imaginary part. 

1.6. The Dihedral Group 

In Section 1.4 we introduced the permutation group 1rN and saw some of 
its properties. Here we shall study a subset of 1rN which constitutes a group 
by itself, called the dihedral group DN, which will be seen to mesh in interest
ing ways with the Fourier transform and the 11 operator, and will be used 
extensively later on. 
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1.6.1. Rotations and Inversions of a Finite, Closed Lattice 

Consider the two permutations IR and 00 , represented by the matrices 

[Eq. (1.45)] 

R:=PG 2 N- 1 
~) ( 0 } IR: 

3 N 
(1.81) 

lo := P( 1 2 N- 1 
~) ( } Oo: 

N-2 1 N-

(1.82) 

[Note that 10 has already appeared in (1.54).] The concepts we shall present 

here can be illustrated as applied to a finite lattice of N masses joined by 

pairs through springs, as shown in Fig. 1.4(a). Assume the lattice is vibrating. 

Although the precise description of the time development of the system will 

be undertaken in Chapter 2, this system will serve to apply the ideas involved. 

a b 

Fig. 1.4. (a) A linear, closed lattice constituted by masses M and springs k. (b) The same 

lattice undergoing vibrational motion. The time-dependent coordinates fn(t), 

n = I, 2, ... , N, of the masses define the coordinates of the state vector f(t) of 

the system. 
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Letfn(t) be the elongation of the nth mass at time t, and construct the time
dependent N-dimensional vector f(t) = 2nfn(t)en, which will be referred to 
as the state vector describing the system. The components of the state vector f 
are shown as the arrows indicating the elongations of the vibrating lattice, 
for some fixed time t, in Fig. 1.4(b). We can express f(t) in a new basis 
{en}~=l by the use of a (passive) transformation which for (1.81) is en= en+l· 
Here and in what follows it will serve us to consider, as Fig. 1.4 suggests, 
that mass number N + 1 is the same as mass number 1, N + 2 the same as 2, 
etc., thus letting the component label n be numbered, as before, modulo N, 
so that the statement En = En+l implies, in particular, eN= el. In the 
£-basis, f(t) has its coordinates given by fn(t) = fn_ 1(t), n = n mod N. 
Insofar as Fig. 1.4 is concerned, the same shape f(t) of the lattice is described 
by a relabeling of the masses which shifts the old labels clockwise by one unit, 
while the elongations fn(t) are correspondingly shifted counterclockwise by 
one unit. 

1.6.2. Producing New Solutions from Old Ones 

Now consider (1.81) and (1.82) as matrices representing in the e-basis 
active transformations in "f'""N, !R, and ~ 0 • In this case, under (1.81), again 
e~ = en+ 1 , but the lattice is now bodily moved clockwise by one unit, and the 
new state vector f'(t) = 2nfn(t)e~ = !Rf(t) will describe its time evolution. 
It is quite obvious, however, that in applying IR to the system in Fig. 1.4 we 
have preserved the neighbor relation between the masses and that the 
original and the rotated lattices are indistinguishable except for our labeling 
of the masses. The physical lattices are the same and thus should be described 
by the same equations of motion. What we have done then is to produce out of 
the state vector f(t) a new state vector f'(t) = !Rf(t) which also describes a 
possible vibration state for Fig. 1.4, which is the old solution rotated clockwise 
by one unit. 

1.6.3. Invariance of the Equations of Motion 

Any transformation which maps the undeformed lattice in Fig. 1.4(a) 
onto itself (invariance transformations of the figure) will correspondingly 
produce a new solution vector f'(t) out of any given solution f(t) and should 
leave the equations of motion invariant, changing only the initial conditions 
which determine their subsequent time development. 

The dihedral transformations are the largest set DN of permutations 
leaving Fig. 1.4(a) invariant as described and will constitute a group since, 
again quite clearly, the successive application of two invariance transforma
tions is a transformation which also leaves the figure invariant, and the 
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identity transformation E = P(~) is an element in this set. These two observa
tions state that the set of in variance transformations of a system satisfies the 
group axioms (a) and (c) (Section 1.4.2). Now axiom (b) (associativity) is 
satisfied since every element of DN is within 7TN, where this property holds. 
Last, since 7TN has only a finite number of elements, for any lr E DN we can 
construct the successive powers lr, 11"2 , lr3 , •.. E DN and eventually reach 
TP = 1, the identity transformation, so 11"11 - 1 = lr- 1 E DN and axiom (d) 
is also satisfied. Hence DN C 7TN is a group by itself and a subgroup of 

Exercise 1.35. Show that the successive powers T, lr2 , lr3 , ••• cannot enter 
into a "loop" without involving the identity element. 

1.6.4. Multiplying Rotations and Inversions for N Odd 

Let N be an odd number and consider the two permutations Ill and D0 

represented by (1.81) and (1.82). We saw that Ill effects a clockwise rotation 
by 27TfN. See Fig. 1.5a. Similarly, D0 reflects the figure across a line which 
passes through the Nth mass and the midpoint of the spring joining the 
[t(N - l)]th and the [t(N + l)]th masses. They are invariance transforma
tions of the figure. Applying Ill k times in succession, we see that ~Rk performs 
a rotation by 27TkfN and that ~RN = 1. Under Ill\ the mth mass is brought 
onto the (m + k)th mass. We can use the shorthand 

~Rk[m] = [m + k]. (1.83) 

Fig. 1.5. (a) Dihedral group symmetries for an N-mass lattice when N is odd: rotations 
IR and inversions 00 through a mass center. (b) Dihedral group symmetries for 
an N-mass lattice when N is even: In addition to rotations IR and inversions Uo 
through a mass center, we have the possibility of inversions IKo through a 
spring midpoint. 
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Next consider fi 0 , leaving mass N in its place; i.e., 

fi 0 [m] = [N - m] (1.84) 

and [N] = [0] mod N. It is not difficult to conclude that 

n,. := ~kfio~-\ (1.85) 

where ~-k := c~-l)k is a reflection of the figure which leaves mass k in
variant, since ~-k maps mass k into the position N left invariant by fi 0 and 
~,. maps this back to its original place. This can be verified using the shorthand 
(1.83)-(1.84): 

fi,.[m] = ~,.fio~-k[m] = ~,.fi 0 [m - k] = ~k[N- m + k] 

= [N + 2k- m]. (1.86) 

The products of an ~ and an fi or of two fi's can be easily calculated in the 
same way. 

Exercise 1.36. For N odd, prove that the 2N elements of DN satisfy the 
"multiplication" table: 

fRkfRI = fRk+l, (1.87a) 

fRkOz = {0l+l/2Ckh k even, 
(1.87b) 

Dz+1/2(N+k» k odd, 

01fRk = {Hl-1/2Ckh k even, 
(1.87c) 

Hl-1/2(N+k), k odd, 

okol = IR2'k -l>. (1.87d) 

Exercise 1.37. Show that the set eN := {1' IR, IR2, ... ' jRN- 1} is a subgroup 
of DN. It is called the cyclic group of N elements. 

Exercise 1.38. Show that the operators jRk and 01 are represented, in the 
e-basis, by the matrices 

(1.88a) 

0 = (1~-l-1 0 ) (1.88b) 
1 0 lfu ' 

where 1, is the unit p x p matrix, 1q A is the unit anti diagonal q x q matrix, and the 
O's are adequate rectangular null matrices. Compare with (1.81), its powers, and 
(1.82). 

Exercise 1.39. Verify that the elements of (1.88) can be written as 

(R")mn = Sm,n+k> 

(ll)mn = Sm,N+2l-n> 

(1.89a) 

(1.89b) 

recalling that row (and column) labels are to be considered modulo N. In par
ticular, matrices (1.88)-(1.89) acting on row vectors should transform the 
entries according to (1.83) and (1.86). 
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1.6.5. Representative Matrices in the Fourier Basis 

Since the elements of DN are now operators, we can ask for their repre

senting matrices in the cp-basis. Indeed, using (1.39), the Fourier transform 

(1.48), and (1.89), we find 

(R)mn = (FtRF)mn 

= N- 1 2 3i,l+ 1 exp[27Ti(jm - ln)(N] 
j,l 

= N- 1 exp(27Tim(N) 2 exp[27Til(m- n)(N]. (1.90) 
I 

Hence, Rk = R" is a diagonal matrix, 

(R")mn = 3m,n exp(2m'km(N). (1.91) 

Similarly, we can show that I 1 is anti diagonal: 

(1.92) 

and in particular 

(1.93) 

which is obvious from (1.54). All the operators in DN are unitary since the 

matrices of 7TN-transformations are. In addition, all D1 are self-adjoint. 

In performing the calculations leading to (1.91) and (I .92) we can see a 

real advantage in treating the row and column indices modulo N, since we can 

automatically keep track of n = n + mN mod N and - n = N - n mod N. 

We are dealing with matrices Mmn = f(m, n) which are periodic functions of 

m and n of period N in both variables. This property holds not only for the 

matrices representing operators in DN but for the matrix F representing the 

Fourier transform (1.48) as well as fl. and 2i [Eqs. (1.60) and (1.62)] repre

senting A Since we are identifying the (N + k)th row with the kth one and 

similarly for columns, we are actually bending any such matrix into a torus. 

The linear combination and product of any two such matrices have the same 

property. 

Exercise 1.40. Show that if g = [Rkf, then their coordinates relate as 

ffn = exp(2m'knf N)/n, (1.94) 

while if h = U0f, 

(1.95) 

Out of (l.94) and (1.95) you can find the coordinates of Uzf. 
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1.6.6. Invariance of lb. under the Dihedral Group 

One last property we want to point out for the operators in DN is that 
they all commute with the operator lb. introduced in Section 1.5.3, i.e., 

£iRk = ~Rklb., (1.96a) 

AD 1 = D11b.. (1.96b) 

Equation (1.96a) can easily be proven using the representatives of lb. and ~Rk 
in the <p-basis, which are diagonal matrices [Eqs. (1.62) and (1.91)], since all 
diagonal matrices commute among themselves. Equation (1.96b) can be 
proven for I= 0, noting that for any matrix A, (10AI0)mn = AN-m,N-n· For 
arbitrary I, 11 can be written in terms of R1 and 10 by (1.85) and the equa
tion can be proven thence. 

Exercise 1.41. Show that any operator function of £ will also commute with 
operators in the dihedral group. 

1.6.7. NEven 

When the number N of masses in a lattice is even, then, in addition to 
the De transformations which leave masses I and !N + I in their places, we can 
perform transformations which invert the lattice with respect to the centers 
of two opposite springs so that no mass is left in its place (see Fig. 1.5b). 
We thus define the operator IK 0 by its action on the lattice masses: 

IK 0 [m] = [N - m + 1]. (1.97) 

Note that IK 0[1] = [N], lli 0 [!N] = [!N + 1], and (IK 0) 2 = ~. In analogy 
with (1.85) we can define IK1 = IR11K0 1R -I, which reflects through the mid
points of the springs joining masses [/] and [I + 1] and masses [!N + I] and 
[!N + I+ 1]. 

Exercise 1.42. Construct the multiplication table of IK's, IR's, and D's. Among 
others, show the relations 

(1.98) 

In particular, if N is a multiple of 2 but not a multiple of 4, note that IK0 and 
D<N+2l/4 commute. Why? 

Exercise 1.43. Show that the matrices representing IK 0 in the e- and <p-bases 
are hermitian and unitary: 

(Ko)mn = Dm,N-n exp(27Tim/N). (1.99) 

Show that for N even, K0 is an anti diagonal matrix all of whose diagonal elements 
are zero, while K0 has the same shape as i 0 but different elements. Also show 
that, as in (1.96), 

(1.100) 
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Exercise 1.44. Show that DN has 2N distinct elements: N rotations (including 
the identity clement) and N inversions. Verify this for N odd as well as even. 

1.6.8. Polar Decomposition of Operators 

We make one last remark about the role of self-adjoint and unitary 
operators with respect to the set of all operators in "f"N: every non-singular 
operator A (i.e., such that det A # 0) can be represented in the form 

A = IHIQJ, (1.101) 

where IHI is self-adjoint and QJ unitary. For the proof we refer to Gel'fand 
(1961, Section II-15). Recalling Eq. (1.80), we are reminded by (1.101) of 
the decomposition of an arbitrary complex number into the product of its 
modulus (a positive real number) and its phase. The phase itself is the 
imaginary exponential of a real number. Here, see Eq. (I. 74). 

1.7. The Axes of a Transformation: Eigenvalues and Eigenvectors 

When applying an operator A to the vectors of "f"N, a good insight into 
the nature of A is given by the directions in "f"N left invariant by the operator. 
As we are particularly interested in self-adjoint and unitary operators, we 
shall develop here the results for these cases. In fact, the knowledge of these 
transformation axes (and the eigenvalues) specify the operator uniquely. 

1.7.1. Invariant Directions 

Assume a vector x E "f"N is mapped by the action of A into a multiple 
of itself: 

Ax = p.x, p. E CC. (1.102) 

This only means that the direction defined by x is invariant under the action 
of A. When an equation such as (1.102) holds, xis said to be an eigenvector 
of A with eigenvalue p.. This is the problem, for instance, of determining 
which directions in the 1"'2-plane in Fig. 1.2 are left invariant by the action 
of the operator. In a basis where A is represented by a matrix A, Eq. (1.102) 
can be written as 

(A - p.l)x = 0. (1.103) 

1.7.2. Characteristic Equation 

If there exists a nonzero vector x satisfying (1.102), then (1.103), being a 
set of N homogeneous equations, requires 

PN(JL) := det(A - p.1) = 0. (1.104) 
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This is called the characteristic equation for A, and PN(fL) is its characteristic 
polynomial. As this is an Nth-degree polynomial in fL, we are assured by the 
fundamental theorem of algebra that there exist exactly N roots fL~> i = 
I, 2, ... , N, of PN such that (1.104) holds. Of course some of these can be 
multiple roots of pN, but not all of them can be zero, as PN(fL) = fLN = 0 
would imply that A = 0 and A would map all of "f""N into 0. The set of 
eigenvalues is said to be the spectrum of the operator. This is a property of 
the operator, not of the particular matrix representation. This is true as long 
as the defining bases are all nondegenerate, for suppose we subject the basis 
in which A is represented by A to an invertible transformation V as given 
by (1.39). Then, from (1.103) it follows that 

0 = v- 1(A- fL11)x1 = (V- 1AV- fL11)V- 1x1 =(A- fL;1)V- 1x1 = 0, (1.105) 

i.e., the vectors v- 1x; are eigenvectors of A (representing A in the £-basis) 
with the same eigenvalues fL;. 

1.7.3. Spectrum and Eigenbasis of a Self-adjoint Operator 

We consider now the case when A is a self-adjoint operator 1HJt = IHI. 
When this happens, we shall prove that (a) the spectrum of !HI is real and (b) 
eigenvectors corresponding to different eigenvalues are orthogonal. Indeed, 
consider eigenvectors x 1 and x 2 corresponding to eigenvalues fL1 and fL2 , 

which are not necessarily distinct. Then, Eq. (1.102) for x1 in inner product 
with x2 yields 

(1.106a) 

i.e., 

(1.106b) 

Equation (1.106b) for x1 = x2 implies that the eigenvalue fL1 is real. This 
then holds for all eigenvalues. Next, if x 2 #- x 1 and fL2 #- fL1 , Eq. (1.106b) 
tells us that x2 is orthogonal to x1 • 

1.7.4. Invariant Subspaces of Multiple Roots 

Last, we shall now show that for self-adjoint operators (c) the m-fold 
roots fLt of the characteristic polynomial are associated with mutually orthogonal 
m-dimensional subspaces of "f""N, each invariant under IHI. When all roots are 
distinct (m = 1), we have shown above that (x;, x1) = 0 for fL; #- fLi," i,j = 
I, 2, ... , N, and the set of eigenvectors of A is a basis for "f""N. When 
multiplicity occurs in some of the roots fL~> we can proceed as follows: 
Consider a first eigenvalue fL1 #- 0, a corresponding eigenvector Xt. and the 
(N- I)-dimensional subspace "1""~1- 1 orthogonal to x1 . Then, as IHI leaves 
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the direction of x1 invariant, it will also transform "Yf1- 1 only onto itself: 

let y E "Yf1- 1 so (y, x1) = 0; then, since IHJ is self-adjoint, 

(1.107a) 

so that IH!y is still orthogonal to x1 and thus in "Yf1- 1. Now, choosing an 

th 1 b · · -J/'N-1 { (N-1) (N-1) (N-1)} d 1' 'f 
or onorma as1s 10 , .L1 , &1 , &2 , ••• , &N_1 , an sea mg x1 1 

necessary so that llx1ll = 1, we can build a matrix X1 with columns given by 

the vectors 

X ·- II (N-1) (N-1) (N-1)11 
1~ X1,&1 ,e2 , ... ,&N-1 · (1.107b) 

Now, since any two columns n, m of X1 are orthogonal, 

(1.107c) 

so that X1 is a unitary matrix. If we multiply the hermitian matrix H by Xr. 

the first column of HX1 will be f.J.rX1, while the other columns will be 

Hence 

or 

N-1 
He~ - 1> = L H1~&!N - 1> E "Yf1- 1. 

1=1 

(1.107d) 

(1.108a) 

(1.108b) 

and adjoining (1.108b), we can see that H 1 is an (N- 1) x (N- 1) hermitian 

matrix. Thus far we have used one eigenvector corresponding to a nonzero 

eigenvalue to perform a unitary transformation on H and reduce it to a 

block-diagonal form. Moreover, the characteristic polynomial (1.104) can 

be written as 

PN(p.) = det(H - p.l) = det(X1(H - p.l)X1) = det(X1HX1 - p.l) 

= (p.1 - p.) det(H1 - p.l) = (P-1- p.)PN-1(p.), (1.109) 

where in the term before last 1 is the (N - 1) x (N - 1) unit matrix. In 

this way we see that the characteristic polynomialpN_ 1(p.) ofH1 has all the 

roots of pN(p.) but p.1 . 

The process for H can now be repeated for H 1 using some other nonzero 

root p.2 (which may be equal to p.1 if this root turns out to be multiple) to 

successively "extract" root by root. If eigenvectors x~1 > · · · x~m> belong to the 
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same m-fold root fLJ> then any linear combination will also belong to the 
same eigenvalue, as 

m m m 

H L; c,x~r> = L; c,Hx)'> = fLJ L; c,x)'>, (1.110) 
r=l r=l r=l 

and thus the set {x)'>}:-"= 1 spans an m-dimensional space "Y'J', invariant under 
D-!1 and orthogonal to all other invariant subspaces or axes. If at the end of 
the recursive process we find m0 zero roots, these will correspond to the 
m0-dimensional subspace "Y;;'o of "f'"N orthogonal to all other extracted 
eigenvectors, and (l.ll 0) holds for "Y;;'o as well. By the Schmidt procedure we 
can build an orthonormal basis for this subspace. 

1.7.5. Diagonalization by Unitary Transformations 

In conclusion, we have proven that if H is a hermitian matrix we can 
build a unitary matrix X = X1X2 · · · Xk (the factor X, extracting the jth 
eigenvector and containing j - I ones along the diagonal) such that 

(1.111) 

where HD is a diagonal matrix containing along the diagonal the eigenvalues of 
Hand X containing the eigenvectors ofH as columns. 

1.7.6. The Second-Difference Operator and Fourier Transformation 

As a concrete example, the operator A of Section 1.5 was shown to be 
diagonalized by the Fourier transform, i.e., Ft~F = 2i in Eq. (1.61). The 
eigenvalues of A are thus the "-m of Eq. (1.62). Note that "-m = ,\N-m and 
,\N = 0, so that for odd N, all roots of the characteristic polynomial but one 
are double, while for even N, ,\N12 is also simple. Since the eigenvectors of a 
self-adjoint operator can be made into an orthonormal basis, the matrix 
representing the operator will be diagonal in that basis. For the £ operator 
this is precisely the cp-basis. 

1.7.7. Eigenvalues of Functions of Operators 

The eigenvalues and eigenvectors of a hermitian operator D-!1 can be used 
to find those of any function P(D-!1). Indeed, let D-llx = fLX; then 

"' "' 
P(D-ll)x = L PnD-llnx = L PnfLnX = P(fL)X. (1.112) 

n=O n=O 

It follows that if x is an eigenvector of D-!1 with eigenvalue fL then it will also 
be an eigenvector of P(D-!1) with eigenvalue P(P-). 
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Exercise 1.45. Consider the operators 0~.; of the dihedral group represented 
by the hermitian matrices I" in (1.88b). As O~c2 = 1 and 1 has 1 for its sole eigen
value, show that 0" can only have eigenvalues ± 1. Find a set of eigenvectors for 
D~c. For this note that DoEn = EN-nand Do<?m = <?N-m· 

1.7.8. Unitary Operators and Their Spectra 

The case when A is a unitary operator IU, QJilJt = 1, will now be 
examined. Of the three main results we proved for self-adjoint operators (on 
the spectrum, orthogonality, and completeness of eigenvectors) only the 
first differs for unitary operators. The other two hold verbatim. First, note 
that if lUx= p.x holds, then, multiplying by p.- 1 QJt, we find QJtx = JL- 1x, so 
that if xis an eigenvector of QJ with eigenvalue JL, it will also be an eigenvector 
of QJt with eigenvalue JL -l. Now consider the analogue of Eq. (1.106) for 
unitary operators for any two eigenvectors of QJ and QJt; 

(1.112a) 

i.e., 

(1.112b) 

For x2 = x1 we thus conclude that the allowed eigenvalues JL must satisfy 
p.* = JL -I, i.e., they can only be complex numbers of unit modulus. Thus 
the spectrum of a unitary operator is restricted to lie on the unit circle. Next, 
as was the case for hermitian operators from (1.112b), if ILl #- p.2 = JL2 1*, 
then the corresponding eigenvectors are orthogonal. Last, the constructive 
proof of the statement of Section 1.7.5 can be followed as before with some 
minor changes. Since (QJy, lUx) = (y, x) = (QJty, QJtx), it follows that if QJ 
leaves a subspace of '"f'"N invariant, so does QJt. The statement stemming from 
(1.107a) thus also applies for unitary operators. The construction (1.107)
(1.108) can now be followed, replacing hermitian by unitary matrices, and the 
proof is complete. We do not have to worry about null eigenvalues here. 

Exercise 1.46. Consider in "1-""3 the unitary rotation around the z-axis given 
by the matrix 

(
cos 8 -sin 8 

R2 (8) = sin 8 cos 8 
0 0 

Verify that its normalized eigenvectors are 

(1.113a) 

( 
1/(2)1/2) 

X3 = i/(~112 (1.113b) 

and that they constitute a unitary matrix X = llxl> x2, x3 ll. The first of the eigen
vectors is the ordinary axis; the second two are polarization vectors. Find the 
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corresponding eigenvalues from (1.113a) by the characteristic equation and 
check the assignments. Notice that the eigenvalue problem has no complete 
solution in a purely real space. 

Exercise 1.47. The rotation matrices (1.113a) are unitary. Find the hermitian 
operator which generates the set as (1.74). You can use Eq. (1.79). Verify that the 
eigenvectors (1.113b) are also eigenvectors of the generating operators. Find the 
corresponding eigenvalues. 

Exercise 1.48. The rotations of the dihedral group DN in "f/N are unitary. 
They are represented in the e-basis by (1.88a), while in the c:p-basis they are 
represented by (1.91). What are the eigenvalues and eigenvectors? 

Exercise 1.49. Consider the Fourier transform matrix. Show that its eigen
values are among the set { ± 1, ± i}. Find eigenvectors for F, noting that F 
transforms en to <fln and <fln to eN- n· 

The reader may ask if any larger class of operators has the property 
common to self-adjoint and unitary ones: orthogonality and completeness 
of their eigenvectors. In fact, this is a property of all and only normal opera
tors, i.e., those operators N which commute with their adjoints NtN = NNt. 
The proof of this statement can be seen, for instance, in the book by Fano 
(1971, Section 2.3). As to the question of whether all operators have eigen
vectors which diagonalize their representing matrices, the answer is in the 
negative. The most one can do in the general case is to achieve a reduction 
into the Jacobi canonical form: a block-diagonal form, one block for each 
distinct eigenvalue and each block being a matrix with a shifted diagonal of 
I 's beside the main diagonal. A discussion of this can be found in the book 
by Gel'fand (1961, Section III). 

1.7.9. Eigenbases of Operators with Degenerate Eigenvalues 

As we have seen, the eigenvectors of a self-adjoint or unitary operator in 
"f/N constitute an orthonormal basis for the space called the spectral basis or 
eigenbasis of the operator. If this operator describes the time evolution of a 
system (to be seen in Chapter 2), it is very convenient to use this basis since 
the coordinate directions defined by the eigenvectors will remain invariant in 
time and will change only in scale. Moreover, the eigenvectors are con
veniently labeled by the eigenvalues of the operator, except, that is, for the 
ambiguities which may arise when two or more eigenvalues coincide in a 
multiple root of the characteristic polynomial. Such eigenvalues are said to 
be degenerate. The term is borrowed from quantum mechanics. Our nearest 
example of degeneracy appears in the eigenvalues of £. which are equal by 
pairs: An = AN-n· To resolve the degeneracy and use eigenvalues to label the 
basis vectors uniquely we may hope to find one (or more) extra operators 
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whose eigenvalues will specify the eigenvector labels completely within each 
of the invariant subspaces of the first operator. 

1.7.10. Removal of Degeneracy 

Specifically, we have Ax; = fL;X; for the first operator, and we need 1Bx1 = 
v1x 1 for the second, so that although some of the fL'S and some of the v's may 
be degenerate, we hope that the assignment of the pairs (fL;, v1) to x;1 will be 
one to one. We shall prove that two operators A and IB can have simultaneously 
the same set {x;}f= 1 of eigenvectors if and only if they commute. If they have 
the same eigenvector set, they will both be represented in the common 
spectral basis by diagonal matrices, which commute. If they commute, then 
once we have found the spectral basis for A (so that the representing matrix 
A of A is diagonal with possibly repeated eigenvalues), the representing 
matrix B for IB in the same basis can only be block diagonal, each block with 
the size and position of the sets of degenerate eigenvalues of A. Each block 
in B can be diagonalized as (1.111) without affecting A; the result is a final 
eigenvector basis {x;}f= 1 where both A and B are fully diagonal. 

1.7.11. The Case of the£ Operator 

The £ operator, we noted, has doubly degenerate eigenvalues. We can 
use any of the dihedral operators commuting with£ [Eqs. (1.96)] to complete 
the labeling. The operator IR seems the wisest choice: in the <p-basis it is 
already diagonal [Eq. (1.91) fork= 1], and all of its eigenvalues are distinct: 

IR<pn = exp(2Trin/ N)<pn, n = 1, 2, ... , N. (1.114) 

Indeed, IR could be used alternatively to define the <p-basis vectors uniquely, 
with no labeling degeneracy. As another choice, the ll 0 operator [Eq. (1.92) 
for l = 0] can be used. (The matrix i 0 does not appear to be block diagonal 
since the pairs of degenerate eigenvalue vectors are not placed sequentially 
in the basis.) If we define 

<pm + = 2- 112(<pm + {j>N-m),} 

<pm- = i2- 112(<pm- {j>N-m), 

m = I, l, .. . , {:(N- 1), N odd, 
2 N- 1, N even, 

{j)d = <j>N, 

we can see that 

and 

£<pm ± = Am<pm ±' 

llo<pm ± = ± <pm ±' 

for Neven, 

so that (1.115) is the common eigenbasis of£ and ll 0 • 

(1.115a) 

(1.115b) 

(1.115c) 

(f.116a) 

(1.116b) 
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Exercise 1.50. Verify that the basis (1.115) indeed has N orthonormal 
vectors. 

Exercise 1.51. Find the matrix transforming the <p-basis to the <p ±-basis 
(1.115). 

Exercise 1.52. Write out explicitly the matrices representing £, D0 , and IR in 
the <p±-basis (1.115). You can do this by using the results of Exercise 1.51 or, for 
the first two operators, directly from (1.116). 

Exercise 1.53. Generalize the choices of basis given by (1.114) and (1.115)
(1.116a): Show that IRk defines a basis equally well as long ask is not a divisor of 
N. Regarding Dt. construct eigenbases of /!:, and D1 with 

(1.117a) 

(1.117b) 

where the range of m is the same as in Eqs. (1.115). Show that a good choice is 

am± = 2- 112 exp(27Tilm/ N), f3m ± = ± 2- 112 exp(- 2TTilm( N). (1.117c) 

Show that this indeed generalizes the <p ±-basis in Eqs. (1.115)-(1.116). 

Exercise 1.54. Recall that for N even the transformations IK 1 [(1.97) and 
below] also come into play. One can define, in analogy to (1.115), 

<p1;. + := 2- 112 [ exp(i1rm( N)cpm + exp(- i1rm( N)cp N- ml, 
<p1;.- := i2- 112 [exp(i7Tm(N)cpm- exp(-i7Tm(N)cpN-m], 

form = 1, 2, ... , tN- 1, and 

Show that these are eigenfunctions of IK0 , i.e., 

1Kacp1-n ± = ± cp1;, ±. 

(1.118a) 

(1.118b) 

(1.118c) 

(1.118d) 

Show that the vectors defined above have real components in the e-basis. One 
can do the same for the other IK 1's. 

Exercise 1.55. Consider in all detail, since it can be done algebraically, the 
eigenvalues and vectors of 2 x 2 complex matrices, i.e., 

(1.119) 

Show that the eigenvalues are 

,\± = t(a +d) ± {[t(a- d)]2 + bc}i' 2 , (1.120) 

which are real for M hermitian (a, d real and b = c*). They are also real for M 
real and [t(a - d)]Z + be :;:, 0. Note that 2:t At = trace M and lltA; = det M: 
These are general properties for any dimension. 
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Exercise 1.56. Examine now the eigenvectors in (1.119). Show that 
y± ;\±-a c 
x± = --b- = ,\± - d' (1.121) 

Note that two proper eigenvectors need not exist for arbitrary M (for example, 
when b = 0). Show that when.:\± and a are real, the angle between v+ and v- is 
(without assuming their normalization) 

(v+ v-) = x+*x-[1 -.!:.....:..(.:\.,..+ ___ a...:)_*] 
' b* .:\+ -a · 

(1.122) 

They are thus orthogonal if M is hermitian or unitary. The results of the last 
exercises will be handy later on. 

Exercise 1.57. Show that if xis an arbitrary normalized vector in fN, then 

(1.123) 

are eigenvectors of Uk and IKz, respectively, with eigenvalues ± 1. The operators 
1-(1 ± Dk) and 1-(1 ± IK1) are projection operators onto orthogonal subspaces. 

1.7.12. Finding the Fourier Transformation 

Exercises 1.58-1.60 show how we can find the Fourier transformation F 
as that which diagonalizes the second-difference matrix representative 11 
given by (1.60). 

Exercise 1.58. Consider diagonalizing li through an (unknown) unitary 
matrix F as l'iF = FA, where ./\. is diagonal with elements An. Show that the 
m - n element of this equality leads to the recursion relation 

(1.124) 

The indices in (1.124) are to be considered modulo N. This allows us to write any 
Fmn in terms of F1n and Fan = FNn as 

(1.125) 

where the Um are polynomials in Xn. Combining the two preceding equations 
shows that they satisfy the recurrence relation 

(1.126a) 

(1.126b) 

Exercise 1.59. Show that the solution to the recurrence relation (1.126) is 
given by 

Um(x) = sin[(m + 1) arccos x]/sin(arccos x). (1.127) 

These are the Chebyshev polynomials of the second kind of degree m, and (1.126a) 
is their Christoffei-Darboux formula. [See the mathematical handbook by 
Abramowitz and Stegun (1964, Chapter 22).] The recurrence relation for the 
elements of F "closes" for m = N = 0. From (1.124) for m = N and from 
(1.125) form = N- 2 and N- 1, show that this leads to a pair of homogeneous 
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simultaneous equations in Fan and F1n, the vanishing of whose determinant 
requires 

(1.128) 

The roots of this polynomial equation will determine the allowed values of An. 
By the use of trigonometric identities, (1.128) can be reduced to 

sin 8(1 - cos NO) = 0, cos 8 := X = 1 + A/2 => 8 = 271'k/ N, 

k = 0, ±1, ±2, ... , (1.129) 

whose roots yield precisely the values of An given by (1.62b), so the index n can 
serve to number columns-any other one would just permute the An's in A. 
Note, though, that all eigenvalues but AN (and AN12 if N is even) are twofold 
degenerate. See Weinstock (1971). 

Exercise 1.60. Substituting the eigenvalues An into (1.125) and letting 
F1n = YnFan, find Fmn· The requirement of unitarity ~m IFmnl 2 = 1 will fix IFanl 
but leaves a three-dimensional freedom in choosing each complex Yn and the 
phase of Fan· The choice arg Fan = 0 and Yn = exp(- 2m"nf N) produces the 
Fourier transform matrix (1.48). Examine first the columns FmN and Fm.N/2 if N 
is even. There, U(xN) = m + 1 and Um(xN12) = ( -l)m(m + 1). Proceed then to 
the other columns, noting the twofold eigenvalue degeneracy. 

Table 1.1. Coordinates in the e- and <p-Bases of Vectors Subject to Various 
Operations or Acted upon by Operators • 

Operation f fn fm 

Linear af + bg afn + bgn a/m + bgm 
combination 

Inner product (f, g) 2J:g. 2//;gm 
n m 

Translation ~kf fn-k exp(2TTikm/ N)/m 
(rotation) 

Inversion Okf fN+2k-n exp( 4TTikm/ N)/N- m 

!Kif fN+2k-n+ 1 exp[47ri(k + t)m/Nl/N-m 

Second /b.f fn+l - 2fn + fn-1 -4 sin2(7rm/N)/m 
difference 

Complex f.* /J-m 
conjugation 

Convolution f (e) g f. g. N- 112 "'ilr§m-r 
(Section 3.1) N- 112 "'ifsgn-s fmgm 

r 
f(<p) g 

• 
Correlation fcg N- 112 "'if.*gn+s J;:gm 

(Section 3.2) • 

• In all cases n and m appear mod N. 
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The Application of Fourier 
Analysis to the Uncoupling 
of Lattices 

We shall apply here Fourier analysis and other vector space and symmetry 
concepts introduced in Chapter 1 to the study of certain coupled systems 
which have simple mechanical realizations as one-dimensional crystalline 
lattices. In Section 2.1 we define the constituents of such systems and their 
corresponding solution so that we may pose the problem of uncoupling 
lattices of such elements in Section 2.2. A rather detailed study of the basic 
solutions is made in Section 2.3 for a simple lattice and in Section 2.4 for 
more complicated ones which can be described by second- or farther-neighbor 
interaction in crystals or as molecular or diatomic chains. We go to a more 
general setting in studying energy and other phase-space concepts which 
belong properly to analytical mechanics. Sections 2.5 and 2.6 can be read 
after the first two sections if the reader so prefers. Although examples drawn 
from Sections 2.3 and 2.4 are used to illustrate examples of the theory, the 
reader should be able to follow the general presentation easily. 

2.1. Mechanical and Electric Analogies 

We shall study here the elements which constitute coupled systems of a 
rather general type, exemplified by mechanical and electric networks. The 
former are constituted by masses, restitution forces (springs), driving forces, 
and viscous damping; the latter will consist of a standard RLC circuit plus 
electromotive forces. The differential equations which describe the time 

43 
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evolution of these two systems point out analogies between their constituent 
elements. 

2.1.1. Masses, Springs, and Damping 

The equation of motion of the simple mechanical system in Fig. 2.1 can 
be found from the following considerations. The external (time-dependent) 
force F(t) will produce the following: (a) an accelerationj(t) of the mass M, 
where j(t) := d2J(t)fdt 2 ; (b) a stretching f(t) of the spring with Hooke's 
constant k; and (c) if the system is immersed in a "perfect" viscous fluid, 
when moving it will experience a velocity-dependent drag c/(t), where cis the 
damping constant of the medium (c ;:.: 0). Setting action equal to reaction, we 
can write the mechanical equation of motion as 

M](t) + c/(t) + kf(t) = F(t). (2.1) 

This is an inhomogeneous second-order linear differential equation with 
constant coefficients, whose solution is quite simple. Of course, actual 
mechanical systems do not exhibit a constant k for all deformations f(t) 
since the spring must be finite; the viscous damping does not, for all velocities, 
have the simple c/(t) behavior, and frictional forces-constant and opposite 
to the direction of motion-can certainly be present. Nevertheless, Eq. (2.1), 
besides being a good model for actual mechanical situations, lends itself 
admirably to the modeling of other apparently unrelated systems. It also has 
the advantage of mathematical simplicity. 

2.1.2. Inductances, Capacitors, and Resistance 

The electric RLC circuit of Fig. 2.2 consists of a series connection of a 
resistance R, an inductance L, a capacitor C, and an applied electromotive 

Fig. 2.1. A driven, damped oscillator. An inertial mass 
M (with elongation/) is subject to a restitution 
spring with Hooke's constant k, a viscous damp
ing device of constant c, and a driving force F. 
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Fig. 2.2. A simple RLC circuit. The current i 
flows through an inertial inductance 
L, a "spring" capacitor C, and a 
damping resistance R and is driven 
by an electromotive source e. 

e 

R 

force e(t). If the circulating change is q(t) and the current is i(t) = dq(t)fdt =: 

q(t), Kirchhoff's second law leads to the equations 

Lij(t) + Rq(t) + C - 1q(t) = e(t), (2.2a) 

(2.2b) 

where we have multiplied the first by CL -l to obtain the second. Equations 
(2.1) and (2.2) are of the same form and lead to analogies between mechanical 
and electric elements. The spring elongation f(t) and velocity are identified 
with the circulating charge q(t) and current, while mass, restitution, and vis
cous drag are identified with either L, C- \ and R or C, L- 1, and RC/L. 
The first analogy is perhaps the more intuitive one, as kinetic and potential 
mechanical energy are made to correspond with magnetic and electrostatic 
forms of energy. The second set leads to a correspondence between a class of 
electric networks and mechanical lattices, as has been presented in the classic 
book by Brillouin (1946). We shall henceforth refer only to mechanical 
lattices in illustrating the concepts of complex vector spaces and the Fourier 
transform. Standing or traveling waves, for instance, are easier to visualize 
in a mechanical device th~n in the dials of an array of meters in a circuit. 
The methods and results can be applied without undue extra effort to the 
electric case. 

2.1.3. Longitudinal and Transverse Mechanical Vibrations 

Since many of the models mentioned above make use of longitudinal as 
well as transverse vibrations of lattices, it is important to point out the 
difference between the two. Longitudinal vibrations in lattices will be 
described in the next section and follow the elementary system in Fig. 2.1 
and the ensuing solution. For transverse vibrations there is more than Eq. 
(2.1) to the problem, so we propose the following: 

Exercise 2.1. Consider transverse vibrations of the mass M under the action 
of two springs each of constant 1-k as depicted in Fig. 2.3. Let the unstretched 
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Fig. 2.3. A mass allowed to perform transverse 
vibrations under the influence of two 
springs. 

length of the springs be a0 • Show that this leads to the nonlinear differential 
equation 

M/(t) + c/(t) + 2k/(t)[l - a0 (a 2 + /(t)2)- 112] = F(t). (2.3) 

Exercise 2.2. Show that in Eq. (2.3) we can make two approximations: 
(a) Assume that the stretched length l (Fig. 2.3) is much longer than the natural 
length a0 . (b) Assume that the oscillations are small, so that [a 2 + f(t) 2 ]1'2 ~ a. 
In each case one obtains a linear differential equation. They are not identical 
though. 

2.1.4. Solutions to the Equations of Motion with Initial Conditions 

In the absence of external forces, Eqs. (2.1 )-(2.2) admit solutions of the 
general type 

f(t) = a exp(iwt), (2.4) 

where a is a constant and w can be found by substituting (2.4) into (2.1): 

-Mw2 + icw + k = 0, 

i.e., we have two possible values of w, given by 

w± = ;:w ± [!- c~rr2 =: ir ± w• 

c 
r:= 2M' 

(2.5) 

(2.6a) 

(2.6b) 

Hence, the general solution of the homogeneous equation (2.1) can be written as 

f(t) = exp(- rt)[a exp(iw•t) + b exp(- iw•t)] (2.7) 

for a and b arbitrary constants. The latter can be determined from two 
known data aboutf(t) and/or its derivatives. Typically, if we know the value 
and derivative off(t) at some initial time t0 ,/o :=f(t0) andfo := df(r)fdrl,=to' 
Eq. (2.7) fort = t0 allows us to solve for a and bas 

a= -(2w•)- 1 exp( -iw+t0 )(w-fo + lfo), 

b = (2w•)- 1 exp( -iw-t0)(w+Jo + lfo). 

(2.8a) 

(2.8b) 



www.manaraa.com

Sec. 2.1) Chap. 2 • Uncoupling of Lattices 47 

Replacement into (2.7) yields 

f(t) = (2w•)- 1{ -w- exp[iw+(t- t0)] + w+ exp[iw-(t- t0)]}f0 

+ i(2w•)- 1{ -exp[iw+(t- t0)] + exp[iw-(t- ! 0)]}/0 • (2.9) 

Reducing further, we can bring the solution to the form 

f(t) = [G(t - to) + 2rG(t - to)]fo + G(t - t0)/0 , (2.10) 

where for w• real we have defined 

G(r) := (w•)- 1 exp(-rr) sin w•r (oscillatory) (2.11a) 

and its time derivative 

G( r) = - rG( r) + exp(- rr) cos w•r. (2.11b) 

As G( r) depends on c, M, and k, it will serve us to denote it occasionally by 
cc.M,k(r). Clearly, G(r) and G(r) are themselves solutions of the original 
differential equation (2.1) with no external forces present. 

2.1.5. Critical and Overdamped Cases 

The structure of the general solution given by (2.1 0) is quite transparent. 
If the damping is small with respect to the restitution spring (more precisely, 
for c2 < 4Mk), w• is a real number, playing the role of the effective angular 

frequency, and the nature of (2.10)-(2.11) is that of a damped oscillation. 

See Fig. 2.4. 

6 c 

Fig. 2.4. The functions G(t) and G(l) for the oscillatory (o), critical (c), and overdamped 
(d) cases. Time units of (M/k)112 are used, the t-axis representing the interval 
from 0 to 10. The vertical axes of the figures have height 1. Damping constants 
in each case are chosen as r = 0.5, 1, and 2. 
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If the damping constant increases, the effective angular frequency will 
decrease and reach zero when c2 = 4Mk. In this case (critical damping), the 
solution (2.10) retains its form, but, as (w•)- 1 sin w•r-'? r, the function G(r) 
is now given by 

(critical) (2.12) 

and G(r) accordingly. See Fig. 2.4 (curves Gc and Gc)· Finally, for c2 > k4M 
we have the overdamped situation when the solution is (2.9) with 

G(r) = (w•)- 1 exp(-rr)sinhw"r 

iw" := w• = i(r2 - k/M)112• 

( overdamped), (2.13a) 

(2.13b) 

See Fig. 2.4 (curves Gd and Gd). As lw"l < r for all k > 0, the solutions fall 
to zero exponentially, while no proper oscillation takes place. 

2.1.6. Some Further Remarks and Exercises 

The solution of (2.1) in the presence of an external driving force is a 
sum of the general solution of the homogeneous part of the differential 
equation seen above plus a particular solution of (2.1). The general con
struction of the solution to the inhomogeneous equation (2.1) will be made 
using the techniques of Fourier and Laplace transforms in Sections 7.4 and 
8. I. The methods in this part are not significantly dependent on the presence 
of external forces so we shall henceforth work only with the homogeneous 
equation (2.1), which represents a damped-oscillator equation of motion with 
initial conditions. 

Among the systems whose models are lattices constituted by such ele
ments we have the oscillations of natural crystals and electric circuits in a 
larger network; in fact, it is the very model of an elastic ether as conceived in 
his time by Newton and followed for several centuries which led to Maxwell's 
equations for the electromagnetic field. 

Exercise 2.3. Refer to Exercise 2.2. Denote by wa the angular frequency of 
approximation (a) [simply wa = w• in (2.6b)] and wb that of approximation (b) 
[as above but replacing the spring constant k by kb := k(l - a0fa)]. Show that in 
approximation (b) the longitudinal and transverse oscillation frequencies are not 
equal but that 

Wa/wb = [(1 - aofa) - c2/2Mk]112 . 

Hence, when drawing transverse oscillations and using the mathematical language 
of longitudinal ones, we are referring to approximation (b). 

Exercise 2.4. Follow the developments in this section for the undamped case 
c = 0. Find G0m"(r) and the form (2.10). 
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Exercise 2.5. Consider the case when no spring is present (k = 0). In that 
case w+ = ic/M, w- = 0, and we are always in the overdamped case with 
w = r = c/2M. Show that the general solution is (2.10) with 

OcMo(r) = exp( -2rr), (2.14) 

i.e., 

f(t) =fa+ (2r)- 1{1 - exp[ -2r(t- t 0)]}/a. (2.15) 

Exercise 2.6. Examine the Situation where no damping or spring is present. 
You can solve the problem either directly or by considering (2.14)-(2.15) as 
r-+ 0. Show that the solution can still be written in the form (2.10) with 

GOMO(T) = 1, (2.16) 

so that 

f(t) =fa + (t - fo)/o, (2.17) 

i.e., simple inertial motion. 

Exercise 2.7. Follow the development in this section when M = 0, so the 
second-derivative term in (2.1) vanishes. The oscillating body looses its inertia, 
and only restitution and viscous forces act. Show that the solution, in terms of the 
initial displacement at t0 , is 

f(t) =fa exp[ -k(t- ta)/c]. (2.18) 

Exercise 2.8. Verify that the solution (2.18) can also be obtained from (2.10) 

and (2.13) by letting M -+ 0. Note that although r, w• _,..co, their difference 
w- ->--ik/c. Similarly, although ccok(r), ccok(r)->0, the term 2racok(r) in 

(2.10) survives and gives rise to the form (2.18). 

2.2. The Equation of Motion of Coupled Systems and Solution 

A system of N interacting elements will be called a lattice. In its simplest 

one-dimensional mechanical realization, it is a set of N masses interacting 

through spring-like forces. This interaction can be nonzero for a pair of 

"nearest neighbors" only or can include "farther" masses as well. Each 

particle by itself, in addition, can be subject to viscous and external forces. 

When the nearest-neighbor interaction is the most significant, it is convenient 

to arrange the mass points on a line where the first-neighbor relation is 

manifest. Further, as we assume every mass to have two first neighbors, the 

points in the lattice will close in a circle. See Fig. 2.5. This model is also 

useful to describe second- and farther-neighbor harmonic oscillator inter

actions. 
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Fig. 2.5. Mechanical lattice composed of 
masses M and springs k with 
first-neighbor interaction only. 

2.2.1. Inertial, Interaction, and Dissipation Operators 

Let In denote the displacement of the nth mass Mn relative to its equi
librium position. Unless the lattice is at rest, it will be a function of time: 
In = ln(t). For the purpose of the model we assume here the vibrations in the 
lattice to be longitudinal only. Let knm be the spring constant between particles 
n and m; then the force acting on the nth mass is knmUn - lm) in the direction 
from mass n to mass m. (See Fig. 2.6 for first-neighbor interactions.) If we 
add the possibility of having a spring knn between Mn and its equilibrium 
position, the total force on Mn due to the interaction among the lattice 
elements is thus 

2 knmUn - lm) + knnln 
m*n 

= - 2 knmlm + In L knm 
m#=n m 

= f [ -knm + on.m(knn + ~>nr)]lm =: ~>nmlm· (2.19) 

F-1 F1 
< ::> 

n-1 n !1+1 

Fig. 2.6. Longitudinal vibrations in a linear lattice. Positions, elongations, and acting 
forces of the deformed lattice (above) are shown vis-a-vis the undeformed 
situation (below). 
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We assume, as in Section 1.6, that the lattice is closed (Fig. 2.5) so that its 
elements are numbered modulo N. Hencelk andlk+mN (m integer) describe 
the same displacement. If, finally, the damping constant for the nth element 
is cn and Fn = Fn(t) is the external force, the equation of motion for the nth 
particle in the lattice is 

Mnln + cnln + 2: Knmlm = Fn, n = 1, 2, ... , N. (2.20) 
m 

2.2.2. Equation of Motion in Operator Form and the Problem of Uncoupling 

The N equations (2.20) can be combined into a single vector equation 
if we identify In with the nth coordinate of a vector fin some (for definiteness, 
the orthonormal e-) basis, as was done in Section 1.6, and the same for Fn. 

The coefficients Knm can be arranged into a matrix K = [[Knm[[ in the same 
basis, representing an interaction operator K Similarly, Mn and cn can be 
taken to be the elements of diagonal matrices M = [[Mn8nmll and C = 
[fcn8nmll representing the inertial and dissipation operators M and C. Equa
tions (2.20) can then be written as 

M f + ICf + IKf = F. (2.21) 

This form is basis independent and in a sense hides the fact that it was obtained 
from N coupled differential equations (2.20): The solution In for the nth 

particle depends through the interaction term on the solution for the other 
1m's, which in turn depend on other ones until all N coordinates are involved. 
This is what Fig. 2.5 tells us. If the interaction operator IK had a basis where 
it was represented by a diagonal matrix, and in that basis M and IC also had 
diagonal representatives, Eq. (2.21) would yield a set of N uncoupled equations 
which could be solved independently, thereby reducing the problem to that 
of last section. This may not be possible in general, though it will be for the 
case when M and IC are multiples of the identity operator-M = M~, 
IC = d-for then they are represented by diagonal matrices in any basis, 
meaning in particular that all masses and damping constants are equal. In 
that case we need only direct our efforts toward finding the eigenbasis of K 
In that basis, IK will be represented by a diagonal matrix, and the system of 
equations will uncouple. Such an eigenbasis does exist, as shown through 
the following. 

Exercise 2.9. The action of the mth mass on the nth through the spring 
with constant knm should equal the action of the nth on the mth; hence knm = kmn· 
Show that this implies that IK is a self-adjoint operator. We proved in Section 1.7 
that all such operators have a complete eigenbasis. Notice that if k,.m = 0 and 
kmn i= 0 this means that mass m is acted upon by but does not influence mass n. 
This is a "servomechanism" whereby the position of mass n is monitored as an 
external force on mass m. 
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n-1 n ll+1 

Fig. 2.7. Transverse vibrations in a linear lattice. The longitudinal components of the 
spring tension forces acting on each mass are equal and opposite. Net force on 
the mass is the sum of the transverse components. 

Exercise 2.10. Consider plane transverse vibrations of the lattice. Show that, 
within the approximations developed in Exercises 2.1 and 2.2 [(a) and/or (b)], 
they lead to equations of motion similar to (2.20). Refer to Fig. 2.7. 

2.2.3. The Interaction Eigenbasis 

Let K := IIKnDnmll be the diagonal matrix representing IK in its own 
eigenbasis { I.Jln}~ = 1 , { Kn}~ = 1 being the eigenvalues. Lettingfn be the coordinates 
off in this basis, Eq. (2.21) becomes 

n = 1, 2, ... , N, (2.22) 

which is that of a set of uncoupled oscillators with spring constants Kn, 

n = 1, 2, ... , N. As the solution of (2.22) was studied in the last section, we 
only need to know explicitly the transformation linking the e- with the 
IK-eigenbasis l.jJ in order to translate the solutions of (2.22) into the solutions 
of (2.20). This is easier said than done, so the remainder of Section 2.2 will 
deal with a simple case where the eigenbasis of IK is one which has been 
studied before. 

2.2.4. The Simple Equal-Mass Lattice 

Consider the lattice in Fig. 2.5, where all masses and springs are equal, 
the viscous and external forces are absent (C = @, F = 0), and only first
neighbor interactions are considered. As knm = k(8n,m+ 1 + Dn,m- 1 ) and 
kn = 0, Eq. (2.19) yields 

(2.23) 

i.e., the interaction operator is a multiple k of the second-difference operator 
(Section 1.5), 

IK = -kl!::., (2.24) 
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and the vector equation of motion (2.21) then reads 

Mf- k/!;,f = 0. (2.25) 

In the e-basis, this is represented by the N equations 

Mj~ = k(fn+l - 2Jn + fn-1), n = 1, 2, ... , N, (2.26) 

which tell us that the acceleration of the nth particle is proportional to the 

curvature of the displacement coordinate around the nth position. In Fig. 

2.7 this is manifest: the larger the angle between the (n - 1)-(n) and 

(n)- (n + 1) springs, the greater the force and hence the acceleration in the 

direction of concavity. 

2.2.5. Uncoupling and Solution 

Equation (2.25) in the c.p-basis (see Section 1.4) appears simpler than 

(2.26), since A is diagonal there and the component equations uncouple: 

m = 1, 2, ... , N. 

(2.27a) 

(2.27b) 

Equations (1.51) relate the normal coordinates {/m}~=l to the lattice displace

ments Un}~=l· The general solution of Eqs. (2.27) in terms of the 2N initial 

conditions is thus of the oscillatory type [see Eqs. (2.6)-(2.11) for c, r = 0]: 

(2.28a) 

(2.28b) 

wm := ( -k'AmfM)112 = 2(kjM)112 jsin(7Tm/N)i = wN-m' (2.28c) 

where fm(t 0) and imCto) are the c.p-basis coordinates of the initial displacement 
and velocity vectors f 0 := f(t0) and fo := f(t 0). We have given an apparently 

redundant absolute value to the last member in (2.28c); this will be seen to be 
convenient when we exploit the identification m = n mod N. One case we 
have "overlooked" is the solution of (2.27) for m = N, as there AN = 0 so 

the Nth normal coordinate is that of a springless "oscillator." This case has 
been referred to before in Exercise 2.6 and leads to a solution of the type 
(2.17), i.e., 

(2.28d) 

which can still be correctly incorporated into Eq. (2.28a) since for wN--+ 0 we 
have GN( r)--+ rand G(T)--+ 1. 
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2.2.6. Green's Operator of Time Evolution 

The solutions (2.28) can now be integrated back to vector form as 

f(t) = G(t - t0)f0 + G(t - t0)f0 , (2.29) 

where G( r) is Green's operator, represepted in the cp-basis by the diagonal 
matrix G(r) = IISmnGm(r)ll, and G(r) = dG(r)(dr similarly. (Recall Exercise 
1.29 where G explicitly denoted the case c = 0, M = I, k = 1.) 

Exercise 2.11. Show that the Green's operator appearing in (2.29) and its 
time derivative are self-adjoint and that they commute with 11:.. 

Exercise 2.12. Using the fact that f0 and f0 in (2.29) are constant, arbitrary 
vectors, show that Green's operator G(r) satisfies the lattice equation of motion 
(2.25): 

MG(r) = kll:.G(r). (2.30) 

Exercise 2.13. Let Eq. (2.29) give the solution at time t in terms of initial 
conditions at time t1 . The latter, however, may be due to still earlier conditions 
at some time t0 < t1 • Show that this implies that the Green's operator must 
satisfy 

G(t - to) = G(t - t1)G(t1 - to) + G(t - t1)G(t1 - to), 

and, in particular, that 

G(O) = ®, G(O)=~. 

(2.3la) 

(2.31 b) 

The subject of time evolution will be taken up in more detail in Section 2.6. 

Equation (2.29), written in the e-basis, will provide us with the solution 
of the original equation (2.26) for the displacements. Indeed, 

n = I, 2, ... , N, 
m m 

(2.32) 

where the coefficients are the elements of Green's operator in thee-basis: 

Gnm(r) :=(en, G(r)em) = [FG(r)FtJnm 

= 2 FnkGk(r)F:'.k 
k 

= N- 1 2 w;; 1 sin wkr exp[l1rik(m - n)/N] 
k 

= N- 1 2 w;; 1 sin wkr cos[21rk(m- n)(N], 
k 

Gnm(r) = N- 1 :2; cos wkr cos[21rk(m- n)(N]. 
k 

(2.33) 

(2.34) 

Thus, although in working out the solution we slipped into the field rt/ of 
complex numbers and unitary transformations, in the end we see that if the 
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2N initial conditions are real, since Gnm(r) and Gnm(r) are real functions, 
the solutions fn(t) are real, as one should expect. 

Exercise 2.14. Verify that the special expression for GN(r) causes no trouble 
in (2.32)-(2.34) if we take care to make wii 1 sin wNT = r. 

2.2.7. Properties of the Green's Operator 

The elements of Green's matrix Gnm(r) in (2.33) and its time derivative 
(2.34) have several manifest properties: (a) Gnm( r) and its time derivative are 
functions of In - mi. This embodies the principle of reciprocity: the effect on 
mass n of a given initial condition at site m is the same as the effect on mass m 
of that same initial conditions at n. (b) The effect, moreover, depends only on 
their relative distance In - ml, not on their absolute position norm. In other 
words, the system is translationa/ly invariant: If f(t) is a solution with initial 
conditions f0 and f0, then the translated initial conditions JRkf0 and JRkfo give 
rise to the solution JRkf(t), as follows from the observation that JRkG(r) = 
G(r)JRk. (In the cp-basis, both operators are represented by diagonal matrices.) 
(c) Similarly, inversion through 01 (and IK1 when N is even) of the initial 
conditions produces a correspondingly inverted solution, as 01 (and IK1) also 
commute with the simple lattice Green's operator. The system is corre
spondingly invariant under inversions. We must emphasize in (b) and (c) that 
translational invariance and inversion invariance refer to the simple lattice 
equations of motion and time evolution embodied by 11::, and G( r), not to the 
initial conditions, which may be arbitrary and not at all invariant under JRk 
or 01• These observations do imply, however, that if a given set of initial 
conditions has definite symmetry under some operation: (as, i.e., 00f0 = af0 

and 00f0 = a f0 , for a = 1 or - 1), then the resulting solution f(t) will have the 
same symmetry [i.e., 00f(t) = af(t)] for all time. We shall have opportunity 
to use these facts at the end of next section in order to describe lattices with 
fixed ends. 

Exercise 2.15. Prove the preceding statements in detail. 

The solution (2.29) to the simple lattice looks neat and compact. It will 
serve us, however, to dedicate all of Section 2.3 to describing certain particular 
solutions in the "physical" &-basis so as to get a firmer understanding of the 
processes involved. This will be useful when we extend the treatment of this 
section to more general lattices. 

Exercise 2.16. Repeat the analysis of the simple lattice (Fig. 2.5) to include 
viscous forces. Assuming they are equal for all particles in the lattice and using 
the results of Section 2.1, prove that the generalization of (2.29) is 

f(t) = [GI'(t - to) + 2Nii'(t - lo)]fo + GI'(t - t0)f0 , (2.35) 
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where the Green's operator Gr(r) is represented in the cp-basis by a diagonal 
matrix with elements 

(oscillatory), 

r := cf2M, 

and corresponding expressions for the critical and overdamped cases. 

(2.36) 

(2.37) 

Exercise 2.17. Consider the limit when damping is much larger than inertia, 
so that cj2M = r ---+ oo while c and k remain finite. Refer to Exercise 2.8. In that 
case, using the overdamped expression for (2.35)-(2.37), show that Gr(r), (i;r(r)---+ 
liD. The operator 2rGr(r) remains finite, however, and (2.35) becomes 

fm(t) = exp[ -4(t- to)kc- 1 sin2(7Tm/N)]/mCto), (2.38a) 

so that];,.(t) and hencefn(t) stop depending on the initial velocity. The solutions 
are exponentially damped and correspond to the vector equation 

f(t) = exp[(t - to)kc- 1 £]f(to). (2.38b) 

Compare with Eqs. (1.72). The function (2.38a) appears in Fig. 3.5(a). 

Exercise 2.18. As a continuation of Exercise 2.17, define the "total heat" 
of the damped massless lattice as 

(2.39) 

Using (2.38b), show that Qat time tis the same as at time t0 • Refer to Exercise 
1.28. 

2.3. Fundamental Solutions, Normal Modes, and Traveling Waves 

The general solution of a coupled system represented by a simple lattice 
was obtained in Section 2.2. Here we shall filter out the information which is 
relevant and extendable to more general cases. 

2.3.1. Fundamental Solutions 

The expression (2.29) for t0 = 0, 

f(t) = G(t)fa + G(t)fa, (2.40) 

gives the state vector for the lattice at time t in terms of the initial displace
ments fa and velocities fa. Assume the lattice starts from rest (fa = 0) with 
the mth mass displaced by one unit (fa = Em). The ensuing time development 
of the lattice is then given by the state vector 

(2.4la) 

with components 

enm(t) = (En, tm(t)) = Gnm(t), n = 1, 2, ... , N, (2.4lb) 
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given explicitly by Eq. (2.34). Assume now that the initial condition of the 
lattice is f 0 = 0, f0 = em, i.e., the mth mass is moving through its equilibrium 
position with unit velocity. The corresponding solution state vector is 

(2.42a) 

with components 

e,. m(t) = ( e,., em(t)) = G,.m(t), n =I, 2, ... , N (2.42b) 

[see Eqs. (2.33)]. We shall refer to (2.41) and (2.42) as the fundamental 
solutions of the N-point lattice. In Figs. 2.8(a) and (b) we have drawn the 
solutions (2.41) and (2.42) for fixed m. The most general initial condition 
fo = Lmfmem, f0 = Lmfmem will then give rise to a state vector 

(2.43) 
m m 

which is a superposition of the fundamental solutions (2.41) and (2.42). 
Note that there are 2N parameters in (2.43): N for the components of f 0 and 
N for those of f0 . The set of solutions (2.43) thus fit a 2N-dimensional 
vector space which will be seen in Section 2.6 to be the phase space of the 
system. Meanwhile, we shall only point to the fact that there are 2N indepen
dent solutions for theN-particle lattice and that the most general solution can 
be expressed as a linear combination of them. 

a b 

Fig. 2.8. Fundamental solutions for the eight-mass linear closed lattice. (a) The fourth 
mass starts with unit elongation, and (b) the fourth mass starts with unit 
velocity. All other fundamental solutions are translated versions of these, 
numbered modulo 8. Note that for small t a "propagation velocity" for the 
disturbance can be seen and loosely defined. As the spring mass is zero, how
ever, every mass in the lattice feels the disturbance instantaneously. (Refer to 
the discussion in Section 5.3 for the infinite lattice.) 
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Exercise 2.19. Show that the set of fundamental solutions is not orthonormal 
for all t. Green's operator is self-adjoint but not unitary. 

2.3.2. A Real Orthonormal Basis 

Figures 2.8(a) and (b) are neat, but the information they contain is 
quite structureless. Since the uncoupling of the lattice equations in Section 2.2 
was the key step in solving the system and the solutions were those of single 
harmonic oscillators, we should be asking for fundamental solutions in the 
G-basis, that is, for the time development of initial conditions given by 
f 0 = C?m and/or f0 = cfJm·· The solutions due to such initial conditions would 
be complex, however, since from (1.52), (En. C?m) = Fmn· To have real initial 
conditions still associated with the cp-basis, we can use the set of vectors C?m ± 
defined in {l.II5), which we write compactly as 

± - c: ±2-112( ) - 0 I {!(N- I), N odd, (2 44 ) crm - s m crm ± cr- m , m - , , ... , I . a 
N 2, Neven, 

whete we use here and below the convention that the subscripts are con
sidered modulo N, and 

gm- = i, except go- = 0, 
(2.44b) 

gm+ =I, except go+= 2- 112, and,whenNeven, gJ12 = 2- 112. 

These vectors also constitute an orthonormal basis (see Exercise 1.50), which 
we shall call the cp ±-basis for short. 

Exercise 2.20. Show that the vectors (1.115) have real coordinates in the 
original e-basis: 

(en, cpm +) = gm +(N/2)- 112 cos(27Tmn/N), 

(en, cpm -) = (N/2)- 112 sin(27Tmn/N). 

Note that (en, cp0 +) = N- 112 and (en, cpj12) = N- 112 ( -l)n. 

2.3.3. Normal Modes 

(2.45a) 

(2.45b) 

We define state vectors analogous to (2.4I)-(2.42) whose initial displace
ments or velocities at ! 0 = 0 are the vectors of the cp ±-basis: 

cpm±(t) := G(t)cpm±, 

cpm±(t) := G(t)cpm±· 

(2.46a) 

(2.46b) 

Solutions (2.46a) start from rest with maximum displacement, while (2.46b) 
start with the lattice moving through the equilibrium shape. We can find the 
form of the lattice vibrations represented by (2.46) by calculating 

¢:;'±(!)=(En, cpm±(t)) = 2 (En, C?k)(cpk, G(t)cpm±) 
k 

(2.47) 
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and similarly for tp;:>±(t). Now Fn,-m = F:;n, and from (2.28b) and (2.28c) we 
can see that Gm = G -m and similarly for its time derivative. Hence, after a 
short calculation the lattice solutions (2.46) are obtained as 

cp;:>+(t) = tm +(2/N)112 cos(27rnmjN) cos wmt, 

cp;:>-(t) = (2/N)1' 2 sin(2'"nm/N) cos wmt, 

tp;:>+(t) = tm +(2/N)112 cos(27rnmjN)w;;; 1 sin wmt, 

9'::'-(t) = (2/N) 112 sin(2TTnm/N)w;;; 1 sin wmt. 

(2.48a) 

(2.48b) 

(2.48c) 

(2.48d) 

These have been plotted in Fig. 2.9. In spite of the small complication ofthe 
fs and the apparent proliferation of indices, the picturing of the solutions
the normal modes of the system-is rather simple: they are standing waves of 
the lattice. They are also separated functions of nand t; that is, they have the 
form g>n(t) = v(n)T(t), the waveform v(n) being modulated by an oscillating 
function T(t). 

Exercise 2.21. Check that there are indeed 2N different normal modes in 
Eqs. (2.48). 

Exercise 2.22. Verify that 

cpm±(t) = -wm2<flm±(t). (2.49) 

Exercise 2.23. Suppose we had started with theN lattice equations of motion 
(2.26) and assumed that the solutions fn(t) were separable functions v(n)T(t). 
Substituting this ansatz into (2.26) and following the usual procedure of separation 
of variables, show that one arrives at T(t) = c exp(iwt), where the -w2 are the 
separation constants, which are solutions of the eigenvalues problem kl!.v = 

- Mw 2v. If this is solved and linear combinations taken to ensure the reality of 
the solutions, Eqs. (2.48) will be obtained. 

2.3.4. The Brillouin Angular Frequency Diagram 

The most general initial condition of a vibrating lattice, in the same form 
as (2.43), can be expanded in the q>±-basis for displacements and velocities 
with coefficients fm ± and fm ±, respectively [m and ± taking the values 
allowed by (2.44)], giving rise to a state vector 

f(t) = L: fm±<Pm±(t) + L: fm±<J>m±(t). (2.50) 
m,± m,± 

In the form (2.50), the solution f(t) is decomposed into sinusoidal waves such 
as those in Fig. 2.9, each set of q>'s with the same value of m vibrating with its 
own angular velocity wm [Eq. (2.28c)]. The q>m's are one-quarter period behind 
the q>m's so they represent essentially the same waveform of the lattice. A very 
handy representation of the allowed angular frequencies wm, very much used 
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Fig. 2.10. Brillouin frequency diagram plotting the angular frequency wm as a function 
of m: (a) the repeating Brillouin zones; (b) and (c) the central (first) zone for 
N even and odd. Crosses mark the integer-m allowed frequencies. Note that 
all wm's are doubly degenerate (for w±m) except for wo, and, if N is even, wNt2· 

This is the difference between (b) and (c). 
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in solid-state physics, is the Brillouin diagram, Fig. 2.10, which plots the wm 
of <pm± as a function of ±m, taking the interval in m to be centered around 
m = 0. The first Brillouin zone for odd N = 2v + 1 extends over m = 

-v, -v + 1, ... , -1, 0, 1, ... , v- 1, v. When N = 2v' is even, it extends 
over m = -v' + 1, ... , -1, 0, 1, ... , v' - 1, v'. Beyond the ends of these 
intervals are the second, third, etc., Brillouin zones, which in the case of a 
one-dimensional lattice are equivalent to the first one. Except for m = 0 and 
N/2 (if N is even), two values ± m correspond to the same value of wm, the 
angular frequency. 

Exercise 2.24. Refer to Section 1.7 and note that the cpm±(t) solutions have 
definite parity under D0 , i.e., 

(2.51) 

for all t. Note that instead of the cp ±-basis vectors we could have used any of the 
eigenbases of If, and D1 as given in (1.118) and still obtained real solutions. The 
sine-and cosine-functions of n would have their arguments displaced by 
27Tln/N. 

2.3.5. Periods and Wavelengths 

The period of each set of rpm's is 

Tm :== 27T/wm :== (Mfk)1127T/Isin(7TmjN)i. (2.52) 

As these periods are in general incommensurable, there will be no periodicity 
of the total solution f(t). The normal modes or combinations of the same 
m-set are the only time-periodic solutions of the vibrating lattice. A repre
sentation similar to the Brillouin diagram is shown in Fig. 2.11. Regarding 

0 N/2 

Fig. 2.11. Brillouin diagram for oscillation periods. 
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the wavelength in units of interparticle separation, it can be seen from (2.48) 
to be 

(2.53) 

i.e., there are m wavelengths in the lattice circle. In Fig. 2.12 we plot (2.53) in 
the Brillouin manner, although Am is not a periodic function of m. Had we 
decided to take Nj(m + N), Nj(m ± 2N), etc., we would have been left with 
the same description of the discrete lattice points; see Fig. 2.13. Some observa
tions on particular normal modes are the following: (a) When N is even, 
cpNi2 +(t) and its time derivative [no cpN/2 -(t) exists] have the largest angular 
frequency, wN12 = 2(k/M)112, and the smallest period, TN12 = 7r(Mjk)112• The 
lattice vibrates in such a way that each mass moves in a sense opposite to that 
of its first neighbors and carries the smallest wavelength: ,\N12 = 2 inter
particle separations. (b) When N is odd, the highest frequency corresponds to 
m = ± (N- 1)/2, as shown in Fig. 2.10. Again, they have the smallest period 
and wavelength. (c) The "normal mode" m = 0 is a bit of a fraud since it does 
not oscillate at all. Formally, for w 0 = wN we had set (w0)- 1 sin w 0t = t, so, 
as drawn in Fig. 2.9, cp 0(t) = N - 112t, cp0(t) = N -1!2. It represents a uniform 
displacement of the full lattice, which by itself is not too interesting. The 
period and wavelength turn out to be infinite. 

Exercise 2.25. When the lattice has an even number of masses one can 
define an eigenbasis of the IK 0 operator proposed in Exercise 1.54 as suggested in 
(2.51) for D0-or any IK 1 as generalized in Exercise 2.24. Explore the possibilities 
in this direction. These will be used at the end of this section. 

0 N/2 

Fig. 2.12. Brillouin diagram for wavelengths. 
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Fig. 2.13. Multiple wavelength degeneracy: <pm±, <pN+m±, •.• and <p-m±, <pN-m±, ..• 

describe the same state for the actual lattice masses. All the relevant informa
tion is thus contained in the first Brillouin zone. 

2.3.6. Traveling Waves 

In exploring the fundamental solutions and the normal modes we 

examined situations in which the initial conditions were either nonzero 

displacements or nonzero velocities. There is a third set of interesting solu

tions, traveling waves, where both sets of initial conditions arc nonzero albeit 

correlated. From the trigonometric functions appearing in the normal modes 

(2.48) we can sec interesting combinations. Let 

<pm:;::(t) := (wm)-lq>m-(t) + cpm+(t), 

q>m<=(t) := + q>m+(t) + Wm<pm-(t), 

(2.54a) 

(2.54b) 

where the ranges of m and +!: will be detailed below. The lattice vibrations 
described by these state vectors (which are solutions of the lattice since the 
cpm±•s are too) are given by their coordinates in thee-basis, which can easily 

be found from (2.48): 

cp';;<=(t) = g m + (2/ N) 112( wm) -l sin(2TTnm/ N + wmt), 

rpr;:<=(t) = + tm +(2/N)112 cos(2TTnm/N + wmt). 

(2.55a) 

(2.55b) 
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The dependence of r:p';;~ on n and t is in the form 2-rrnm/N + wmt, i.e., it is 
constant for 

(2.56) 

With advancing time, the sinusoidal lattice shape represented by r:p';;~(t) will 
shift to the right and left, respectively, thus describing a right- or left-moving 
waveform. See Fig. 2.14. 

2.3.7. Propagation Velocity 

The velocity of this traveling wave is, from (2.56), 

(2.57) 

in units of interparticle separation per unit time. The wavelength of the 
traveling waves is still (2. 53), as this is the characteristic of the m-set of states. 
In Fig. 2. I 5 we have plotted a Ia Brillouin the absolute value of the velocities 
(2.57) as a function of m. This will also clarify the ranges and "extreme" 
cases of the indices m and +tin (2.54)-(2.55). (a) When N is even, we saw that 
only cpN/2+ existed, so here we conclude that cpN12 ~ = - cpN12 ..... Inspection 
of (2.55) for this case shows that this "traveling" wave has no definite sense 
of motion, although its velocity (2.57) is vN12 = 2(k/M)112f-rr. It is the slowest 
of the waves. (b) When N is odd, the slowest waves correspond to m = 
(N- 1)/2. For all other m's down to m = 1 both left- and right-traveling 
waves exist until (c) form= 0, cp0 .... = -cp0 ~ = cp0 +. Again this "wave" 

0 N/2 

Fig. 2.15. Brillouin diagram for velocities. 



www.manaraa.com

Sec. 2.3] Chap. 2 • Uncoupling of Lattices 69 

is a freak, as it has no sense of motion, although it defines an upper limit for 

propagation velocities in the lattice. From (2.28c) and form_,._ 0 this is 

Vo = (kj M)l/2 (2.58) 

in units of interparticle separation. Note that this quantity depends only on 

the lattice parameters of mass and spring. 

Exercise 2.26. Show that the traveling waves satisfy 

!._ cnm+= = + aw !RaN 14m 
0( T - m > a= ± I. (2.59) 

These are the "square roots" of the second-order differential equation (2.49). 

Are there "square root" forms for the lattice equation of motion (2.25) for 
solutions consisting only of right-moving (or left-moving) waves? Why not? 

2.3.8. Initial Conditions and Dispersion 

Again, the most general state vector describing the lattice can be written 

in terms of traveling waves as 

f(t) = 2 fm+=cpm+=(t) + 2 fm+=cpm+=(t). (2.60) 
m,~ m,,;: 

This is the analogue of Eqs. (2.43) and (2.50) for the traveling wave cp+=-basis. 

Exercise 2.27. Find explicitly the linear combination coefficients in (2.60) in 
terms of the initial displacements and velocities of the lattice points. 

For any set of linear combination constants, Eq. (2.60) tells us that any 

vibration state of the lattice can be decomposed into 2N traveling waves. 

As each m+=-set of waves travels with its own velocity (2.57), any initial shape 

of the lattice, even if it is composed only of waves traveling in one direction, 

will be changed: different constituent waves travel with different velocities. 

A discrete lattice therefore cannot carry definite "signals" other than pure 

sinusoidal forms, as their shape is eventually lost. Such media are called 

dispersive. 

2.3.9. Lattice Models for Dispersive Media 

Since crystals are physical systems modeled by lattices with a very large 

number of masses N, one can ask how and when the dispersion of signals 

appears. Note that the velocity diagram, Fig. 2.15, has the same shape for all 

N, except for the "actual" points corresponding to integer values of m, 

which come closer together as N increases. The curve vm, for very small 

values of m/N, can be approximated by the constant v0 in Eq. (2.58). If our 
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signal is composed only of low-m partial waves, whose wavelengths are very 
much larger than the interparticle separation in the lattice, the signal will 
propagate, to a good approximation, with no loss of shape, as all constituent 
waves have the same propagation velocity. In this linear approximation, 
dispersion is absent. The dispersion of signals-mechanical or electromag
netic-gives some information of the "granularity" of the medium. This 
statement still holds (with the appropriate adaptations) even when the 
"microscopic" model of a system which "in the large" satisfies the wave 
equation is not that of a vibrating lattice. Sound propagation in gases or 
amorphous materials, for instance, can rely on different microscopic models. 

As the preceding discussion may suggest, when a mechanical lattice is 
proposed as a microscopic model for a system, the relevant information is 
mostly that of the spectrum of oscillation frequencies, transmittable wave
lengths, and the like. There is little experimental content in specifying arbi
trary initial conditions or following the vibration of individual atoms. In 
this sense, the Brillouin diagram and its three-dimensional version for 
various crystalline lattices contain much information, and accordingly we 
shall time and again cast our results in these terms. 

Exercise 2.28. Assume the lattice is damped. Follow the discussion in this 
section for this case. Note that little is changed except for the fact that the 
oscillation frequencies wm become complex. Generally, there will be overdamped 
as well as oscillatory solutions, the former ones for small values of m and the 
latter ones for large m's. 

Exercise 2.29. Consider a one-dimensional lattice with fixed ends. This can 
mean that the first and last masses are held fixed [Fig. 2.16(a)] or that the mid
points of two springs are constrained [Fig. 2.16(b)]. Show that the "method of 
images" appears as a natural way to phrase the problem: Assume that a free 
N-point lattice (N even) has initial conditions which are odd under inversions 
through 00 or 11<0 , as then, for all t, the resulting state vector f(t) will have the 
same property. If 00f(t) = - f(t), masses Nand N/2 are fixed, while if ll<0f(t) = 
-f(t), the midpoint of the springs joining the mass pairs (N,l) and (!N, tN- 1) 
pass through the equilibrium position. The actual lattice (Fig. 2.16) is one-half 
of the proposed free lattice. 

Exercise 2.30. Examine the allowed normal modes which can be present in 
the above "extended" lattice: In Eq. (2.50) only fm- and/m- can be nonzero for 
Fig. 2.16(a) and analogously (see Exercise 2.24) for the lattice in Fig. 2.16(b). 
In terms of traveling waves, show that only combinations of cpm~ + cpm~ are 
allowed to appear in the former. What about the corresponding combinations in 
the latter? 

Exercise 2.31. What happens with the Brillouin and similar diagrams for 
the lattice with fixed ends? Show that over the "physical" half-lattice ortho
gonality and completeness for the odd modes still hold. 
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Fig. 2.16. Lattices with two fixed (a) masses, (b) string midpoints. These can be accom
modated into a lattice with double the number of masses with restrictions on 
the allowed vibration modes. Half of the lattice will serve as a "negative 
mirror image" of the original. 

Exercise 2.32. We can consider lattices where the two endpoints are free. 
See that this is well represented, as before, by a closed lattice whose state vectors 
are even under reflection by 00 • A similar analysis follows. 

In this part we have for generality concentrated on the description of 
closed lattices and relegated the study of the fixed-endpoint system to the 
foregoing exercises. In Part II, the study of the vibrating string will be done 
almost exclusively on the fixed-endpoint problem. 

2.4. Farther-Neighbor Interaction, Molecular and Diatomic Lattices 

The concepts developed in Section 2.3 for the simple lattice with only 
first-neighbor interactions and equal springs and masses will be applied now 
to systems where each one of these restrictions in turn is lifted in order to 
examine the features which characterize these extensions. 

2.4.1. Farther-Neighbor Interaction and Uncoupling 

Lattices with farther-than-first-neighbor interactions (see Fig. 2.17) are 
certainly relevant in crystallography where the interaction between the 
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Fig. 2.17. Mechanical model of a linear, 
closed lattice with first- and 
second-neighbor interactions. 

lattice atoms is electromagnetic and a first-neighbor "spring" model is at 
best only a good approximation. When describing the interaction term in the 
lattice equation of motion [Eqs. (2.19)-(2.22)] we allowed for pth neighbor 
forces through springs of Hooke's constant kn,n±P and noted only that 
knm = kmn is the requirement of action-reaction equality. Here we shall 
restrict the lattice to have the same Hooke's constant between all pth neighbors 
(as shown in Fig. 2.17 for p = 1 and p = 2) so that kP := kn,n±P is indepen
dent of n. The simple lattice has only k1 'f 0, while in the general case we can 
consider kP for p from zero (each mass attached to its equilibrium position 
by a spring k 0) up top = 7T(N) [7T(N) := (N- 1)/2 for N odd, and 7T(N) = 
N/2 for N even, taking care to note that in this case two springs kN12 join 
opposite masses]. In this general case, the interaction operator IK of Eq. 
(2.21) is represented in the t:-basis by a matrix K with elements 

n(N) 

Knm = -kln-ml + 28nm L: kp• 
p=O 

(2.61) 

[See Eq. (2.19), recalling that row and column indices are taken modulo N.] 
The matrix K therefore has entries k~ := k 0 + 2 L:~<!l kp along the main 
diagonal and - kP on diagonals p units on both sides of the main one. 
For representation purposes it is convenient to write K in terms of the 
dihedral matrix representatives [Eq. (1.88)] as 

n(N) 

K = k~1- 2 kp(RP + R-P) (2.62) 
p=l 

and correspondingly for the operators themselves. In this way, it is easily 
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seen that IK is represented by a diagonal matrix in the cp-basis, since the IR's 

are so represented [Eq. (1.91)]. Quite simply, then, 

{ 
n(N) } 

Kmn = smn k~ - p~l kp[exp(27Tipm/N) + exp( -27Tipm/N)] 

(2.63) 

2.4.2. Brillouin Frequency Diagram 

The lattice then uncouples into N oscillators with constants Km := Kmm 

[Eq. (2.22)], and the allowed oscillation frequencies of the system are given by 

(2.64) Wm = (Km/M)112 = 2[ kof4M + ~: (kp/M) sin2(7Tpm/N)r
2 

[compare with Eqs. (2.27) and (2.28)]. The development of Sections 2.2 and 

2.3 applies verbatim to this lattice with only a change in the values of the 

allowed angular frequencies (2.64). A Brillouin diagram for this lattice is 

shown in Fig. 2.18. 
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"'m - ' 
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'\ 
\ \ 

\ \ 
\ \ 
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\ \1:3 
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~ 0:1 

N/2 

Fig. 2.18. Brillouin frequency diagram for a lattice with first- and second-neighbor 
interactions through spring constants k 1 and k2. Curves are plotted for 
various ratios k1: k 2 • If k1: k2 :: 1:0, we obtain the first-neighbor case (Fig. 
2.10). In the other extreme, if k1 : k2 ::0:1, we obtain two uncoupled lattices 
of the former type, which results in a doubling of the simple lattice first 

Brillouin zone. 
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Exercise 2.33. Note that if k 0 -:;t 0 the zeroth mode becomes a true oscilla
tion mode. What is the effect on the Brillouin diagram in Fig. 2.18? 

Exercise 2.34. Describe the fundamental solutions, elements of Green's 
matrix, and normal modes of this lattice. 

Exercise 2.35. Find the propagation velocities of the traveling waves. 

Exercise 2.36. Note that instead of expanding K in powers of R as was done 
in Eq. (2.62), one could expand it in powers of 11. For the case of first- and 
second-neighbor interaction only, this leads to K = - (k1 + 4k2 )11 - k 2112 • 

Arrive at the result (2.64) for this case and the more general pth-neighbor inter
action case. 

Exercise 2.37. Suppose only k2 -:;t 0. Show that if N is even the lattice 
uncouples into two N/2-mass lattices. What if N is odd? 

Exercise 2.38. Introduce viscous damping into the problem. 

2.4.3. Molecular Lattices 

We consider now a lattice with two kinds of first-neighbor interaction: 
one with Hooke's constant k 1 between masses Nand I, 2 and 3, etc., up to 
N - 2 and N - I (note that N is even) and another with k2 between I and 2, 
etc., uptoN - I and N, as in Fig. 2.I9. Such a system is said to be a molecular 
lattice. 

Fig. 2.19. Molecular lattice. Springs 
with constants k1 and k. 
alternate between the 
masses. 
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The interaction operator wi11 no longer be represented by a matrix 
constant along the diagonals as in (2.62) but, from (2.19), by 

kl + k2 -k2 0 -kl 

-k2 kl + k2 -kl 0 

K= -kl kl + k2 -k2 (2.65) 

0 -k2 -k2 

-kl 0 -k2 kl + k2 

In terms of simpler matrices which have appeared before [Eqs. (1.67a) and 
(1.88a)], we can write (2.65) as 

K = (k1 + k2)l- k1(E1R + R_ 1E1)- k2(E1R- 1 + RE1) (2.66) 

and correspondingly for the represented operators. Manifestly, (2.65) is a 
hermitian matrix, while in (2.66) the hermiticity is also evident, as E1 is 
hermitian and R unitary. The dihedral symmetry DN of the original simple 
lattice is broken, and we are left only with invariance transformations which 
are powers of IR 2 and the lk\'s (Section 1.6) which by themselves form a 
subgroup of DN. The odd powers of IR and the D's will exchange springs k1 
and k2. 

2.4.4. The Interaction Matrix and First Uncoupling 

Following earlier treatments of the DN-symmetric lattices, let us write 
the equation of motion Mlf + lk\f = 0 in the cp-basis. In this we can aid 
ourselves with Eqs. (1.67), which have four diagonal blocks, and (1.91), 
which is completely diagonal, in order to arrive, after some calculation, at 

- _ ( 2(k1 + k2)JJomn sin2(7Tm/N)JJ i(k2- kl)Jiomn sin(27Tm/N)II) ( ) 
K- -i(k2 - kl)Jiomn sin(27Tm/N)II 2(kl + k2)Jiomn cos2(7Tm/N)Ii ' 2"67 

where II omnv(n)ll are N/2 x N/2 diagonal submatrices with v(n), n = 
I, 2, ... , N/2, along the diagonal. The matrix (2.67) is thus hermitian, as it 
should be, and composed of four diagonal blocks. The Fourier transform has 
failed here to produce a completely diagonal matrix. It has, however, con
siderably simplified the problem since the original equations of motion 
MK = - L1< Kndk were fully coupled, whereas now M/m = - Lk Kmkh• due 
to. the form (2.67) of K, consists of N/2 uncoupled pairs of equations. These 
are 

M]m = -2(k1 + k 2) sin2('rrmJN)fm- i(k2- k1) sin(27Tm/N)/m+N/2, 
(2.68a) 

M/m+N/2 = i(k2 - k 1) sin(27TmjN)fm - 2(k1 + k2) COS2 (7Tm/N)fm+NJ2• 
m = 1, 2, ... , N/2- 1, (2.68b) 
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Fig. 2.20. "Extended" Brillouin diagram for the frequencies of a molecular lattice of N 
masses where (a) N/2 is odd (N = 18) and (b) N/2 is even (N = 16) for a ratio 
k 6 /ka = ±.The dotted line represents the Brillouin diagram of an equal-spring 
lattice. The allowed frequencies, roots of Eq. (2.70) [wm± - ( -am±)l12 ; see 
Eq. (2.80)], thus become the double-period "optic" and "acoustic" branches 
of the diagram. 
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and 

Mk=O. (2.68c) 

Notice first that Eqs. (2.68c) correspond exactly to (2.27) for m = N/2 and 

m = N for a simple lattice with spring constant ka := (k1 + k2)/2. The 

solutions will be given then by Eqs. (2.28) for these values of m and k, so we 

can start drawing our new Brillouin diagram for the molecular lattice by 

fixing these two values of A~, eigenvalues of -k; 1K See Fig. 2.20 form = 0 

and m = N/2, the dotted line representing the simple lattice with ka := 

(kl + k2)/2. 

2.4.5. Complete Uncoupling 

For Eqs. (2.68a)-(2.68b), some further uncoupling is necessary: using 

the Am, m = 1, 2, ... , N, eigenvalues of£, we can write them as 

(2.69a) 

with 

{<ml := ( Jm ), 

Jm+N/2 

6 a m m+N/2 ' (2.69b) i(k fk )(A A )1/2) 
Am+N/2 

where k 6 := (k2 - k 1)/2 and ka as before. The 2 x 2 hermitian matrix 

A.<m> can be diagonalized exactly [see Eqs. (1.119) and (1.120)], obtaining for 

its eigenvalues 

am± := (,\m + Am+N/2)/2 ± {[(Am - Am+N/2)/2)2 + (kofka)2 ,\mAm+N/2F12 

= -2 ± 2[cos2(27Tm/N) + (k6/ka) 2 sin2(27Tm/ N)F'2 

(2.70) 

Comparing with the equal-spring system (k6 --?- 0), we recognize that am+ -

Am = AN-m and o:m---?- ,\Nt2 -m = ANt2+m· Reflection symmetry under the 

exchange m ~ N/2 - m holds from (2.70). Form = 0, the cases (2.68c) are 

also correctly reproduced in (2.70). We can thus denote the eigenvalues of 

-IK as kat.~, m = 1, 2, ... , N [in analogy with those of£; see Eq. (2.27b)], 

where 

{ N/4- 1 
m = 0, 1, 2, ... , (N _ 2)/4 

(2.71a) 

for N/2 even, 
(2.71b) 

for N/2 odd, 
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and 

..\;N/4 = aii14 when N/2 even. (2.71c) 

2.4.6. Oscillation Frequencies and Shifts 

The meaning of the rather involved numbering used above should be 
apparent in Figs. 2.20(a) and (b) for odd and even N/2, respectively. The 
spectrum of IK modifies that of - k/1:, in that (a) the eigenvalues ..\~ divide into 
two sets: those due to the a+'s and those due to the a-'s, as 

0 = ..\~ :::;; lam+ I :::;; 2 - 2lk6/kal :::;; 2 + 2lk6/kal :::;; lam-~ :::;; l..\;,d = 4; 

(2.72) 

in between, there is a gap of height 4lk6jk"l; (b) the a-'s raise "wings," 
while the a+'s lower them by the same amount: 

(2.73) 

The slope of the curve for ..\~in Fig. 2.20 remains positive for m between 
0 and N/2 and vanishes form = 0, N/4 and N/2. The inequality (2.72) holds 
for all values of lk6jk"l, preventing the "wings" from topping ..\;,12 . 

Exercise 2.39. Show that for small ik6/k,i 
am+ - Am ~ (k6/ka)2 sin2(27rm/N). (2.74) 

Exercise 2.40. When one of the springs vanishes (k2 _,_ 0) we are left with 
N/2 simple oscillators. What happens with the spectrum of IK? 

2.4.7. Optic and Acoustic Modes 

The eigenvectors of the submatrix _A<ml which involves the m and 
(N/2 + m) rows and columns of the interaction matrix K will now be found. 
For 

(2.75) 

the ratios of the components can be conveniently written, using (2.69b ), 
(2.70), (2.73), and identities between the ..\'s, as 

. x~+ .k" am+ -Am .k" ..\N/2-m- am-
- lpm == x'{' + = - 1 k 6 2 sin(27rm/ N) = - 1 /0, 2 sin(27Tmj N) (2.76) 

where 0 :::;; Pm < I. In this form it is manifest that as the springs become 
equal (k6 -+ 0, Pm -+ 0), xm + has a vanishing lower component and xm- a 
vanishing upper one. In this case fmf.Pm and fm+Nt 2f.Pm+Nt 2 in (2.69) give, for 
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their coefficients fm(t) and fm+N/ 2 (t), uncoupled differential equations. In 
general, however, the eigenvectors of the molecular lattice will be a super
position of <i>m and <i>m+N/2 with the ratio (2.76). We can thus define, corre
sponding to the eigenvalues - kaam ± of the interaction operator, 

\j.lm + := xf+<pm + X~+<i>m+N/2 = xf+(<pm- ipm<i>m+N/2) for am+, (2.77a) 

\j.lm- := xf-<pm + X~-<i>m+N/2 = X~-c -ipm<j>m + <i>m+N/2) for am-, (2.77b) 

which constitute an orthonormal basis for "f"N once the proper coefficients 
xf + and X~- are determined: 

(2.77c) 

[To keep the index bureaucracy straight, we remark that the range of indices 
in (2.77) follows that in (2.71) and that in the case m = 0 or N/2, Pm is un
defined, as we have only \j.l 0 + = <i>N and ~N"12 = <pN12 .] Expanding now the 
sought for solution f(t) in terms of the \j.l±-basis (2.77), 

f(t) = L: Jm,±(t)~m±, (2.78) 
m,± 

the equation of motion for the molecular lattice [Eq. (2.21) with the inter
action matrix (2.65)] uncouples completely as 

(2.79) 

Its solutions were worked out before in Section 2.1 and are of the purely 
oscillating type (2.7), with angular frequencies 

(2.80) 

2.4.8. Brillouin Diagrams 

We have drawn the Brillouin diagram corresponding to (2.80) in Fig. 
2.21, where, as is customary, only the range ofm between ± N/4 is represented. 
Figure 2.21 shows that the oscillator frequencies divide into two sets: the 
so-called acoustical band for the w+'s, which involves low frequencies, and the 
optical band for the w- 's, which involves a range of higher frequencies. They 
are separated by the gap which is called the stopping band. This nomenclature 
stems from solid-state physics and refers to the fact that in actual crystals the 
frequencies correspond, respectively, to mechanical acoustic vibrations and 
electromagnetically induced oscillating fields in the optical range which the 
crystal is able to carry or transmit. It is opaque for frequencies outside these 
bands. Electric circuits acting as low-pass or high-pass filters work on the 
same principles. 
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Fig. 2.21. Usual Brillouin frequency diagram for a molecular (and diatomic) lattice 
extending on integer values within ± N/4. It has been plotted for various 
values of k 6/k •. If this ratio is zero, the simple lattice diagram is regained; on 
the other extreme, if k1 = 0, the lattice breaks up into N/2 two-mass dumbbells. 
As each has only zero and its natural oscillation frequency, we obtain two 
clusters of N/2-fold degenerate frequencies. 

2.4.9. General Description of the Solutions 

In spite of the rather lengthy derivation, the orthonormal t.IJ±-basis in 
Eqs. (2.77) is clearly the" natural" basis for the description of the molecular 
lattice. Most of the developments of Section 2.2 and 2.3 follow unchanged 
as follows: (a) Once the solution for the coordinatesfm(t) is found in terms 
of initial conditions, it assumes precisely the form (2.28) in terms of functions 
Gm( r) and their time derivatives, where the proper oscillation frequencies 
(2.80) appear. These constitute the t.IJ±-basis representative of the self-adjoint 
Green's operator IG(r), whose expression in other bases-notably the "physi
cal" e-basis-can be calculated leading to the general form (2.29) of the 
solution. (b) Fundamental solutions, for initial conditions of single vectors in 
the e-basis, can be found. (c) The basis vectors t.!Jm ± do not have purely real 
coordinates in the e-basis, so in order to produce normal modes we must find 
a more appropriate basis. We can consider an eigenbasis of IK 0 (the dihedral 
operator, using the results of Exercises 1.54 and 1.57) and replace the <f>m's 
in (2.77) by the <p;,±'s of that basis. We can also build real eigenvectors out 
of (2. 77), recalling that complex conjugation in the <p-basis is defined through 
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cp~ := Cf'N-m· Consideration of initial conditions given by single vectors in 
this real basis will lead to normal modes as (2.48) with the new wm's and two 
trigonometric summands in place of one. 

Exercise 2.41. Find explicitly the unitary transformation linking the E- and 
the ~±-bases. 

Exercise 2.42. When obtaining the nth coordinate in the £-basis of ~m ±, you 
will notice that they behave like exp(- 27Timn/N) times [1 - ( -l)nipm] for the 
acoustical band eigenvectors and like the same function times [- ipm + ( -1)"] for 
the optical band eigenvectors. In the latter modes, then, first neighbors oscillate
on the average-on opposite sides of the equilibrium line, while for the acoustical 
modes they tend to be on the same side. See Fig. 2.22. 

Exercise 2.43. Will the Green's matrix in the £-basis be an even function of 
In - ml as it was in (2.33)? What should be its main characteristics? 

Exercise 2.44. Can you find an eigenbasis related to (2.77) which is also an 
eigenbasis of fi 0 ? Why not? 

Exercise 2.45. Consider finding traveling wave solutions for the molecular 
lattice. 

Exercise 2.46. Introduce viscous damping into the problem. 

--e--e-------------~ \ I 

0+ 0- ~·-+~~-+~~~~~~~+ 

1-

2-

3-

a b 
Fig. 2.22. (a) Acoustic, and (b) optic oscillation modes for a molecular lattice with 16 

masses (circles). Springs k1 and k2 are represented by broken and unbroken 
lines, plotted for real values of the abscissa. The spring ratio is k 6/ka = t. 
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Fig. 2.23. Diatomic lattice. Masses M1 
and M2 alternate. 

2.4.10. Diatomic Lattices 

The diatomic lattice (see Fig. 2.23) is a lattice with two alternating masses 
M 1 and M 2 . It has several features in common with the molecular lattice and 
some differences as well. The intertial operator was up to now a multiple M 
of the unit operator [Eq. (2.21)]. For the diatomic lattice, it will be represented 
in the E-basis by a diagonal N x N matrix (N even) with M 1 in the odd and 
M 2 in the even position. In terms of matrices we have introduced before 
[Eqs. (1.67)], we can write 

M= 

and the (undamped) equation of motion can be written as 

f + M- 1 1Kf = 0. 

2.4.11. Diagonalization of a Nonhermitian Matrix 

(2.81) 

(2.82) 

Our procedure up to now has been to find the eigenvectors and -values 
of the interaction operator in order to find a basis of "f/N where the lattice 
equations uncouple. The problem with Eq. (2.82) is that M -li}i is not a 
hermitian operator. Although the two factors are hermitian, they do not 
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commute. Yet M- 1 1K is not too "far" from being hermitian; in the q>-basis 
it is represented by 

(f.La!l8mnKmll f.Loll8mnKm+N1211) 

= f.Loll8mnKmll f.Lall8mnKm+Nt211 ' 

where we have used the result (1.67) on the Ei and Eq. (2.63) for the form of 
the general pth-neighbor equal-spring interaction matrix. We are representing 
an N/2 x N/2 diagonal matrix with elements v(n) by ll8nmv(m)!l as in Eq. (2.67). 
All 2 x 2 submatrices formed by taking the intersections of the nth and mth 
row and column are diagonal and hermitian except when m = n + N/2. 

Exercise 2.47. Show that M - 1 11<, in its e-basis representation, has two 
N/2 x N/2 hermitian submatrices: those constituted by the even- or odd-rowed 
and -columned elements of the original matrix. 

The nondiagonal 2 x 2 submatrices are 

J.(<m) := (f.LaKm f.LoKm+N/2) =: f.LakJ~(m). 
f.LoKm f.LaKm+N/2 

(2.84) 

Their eigenvalues can be found by applying (1.120) and extracting the factor 

f.Lakl: 

klf3m ± = (Km + Km+N/2)/2 

± {[(Km- Km+N/2)/2]2 + (f.Loff.La) 2 KmKm+Nt2P 12 • (2.85) 

The spectrum of (2.84) and (2.85) looks very much like the molecular lattice 
spectrum (2.70). Indeed, for first-neighbor interactions only, we have Km = 
k 1 /\m, and the expressions for f3m ± in the two-mass case and cxm"" for the 
molecular case in (2.70) become identical under the formal substitution 

i.e., (2.86) 

2.4.12. Oscillation Frequencies 

The Brillouin diagram for the diatomic first-neighbor interaction lattices 
is then given by Fig. 2.21 with the same eigenvalue numbering and the 
appropriate label changes: for M2 ~ M1 , fLo~ 0 and k 1 f3m + ~ Km, k 1 f3m- --+ 

~<m+Nt2 · For the pth-neighbor interacting lattice another property of the 
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molecular case carries over: the raising of the optical band "wings" equals 
the lowering of the acoustical band ones, 

(2.87) 

For the general diatomic lattice, the Brillouin diagram can thus be con
structed based on the monatomic one in Fig. 2.18. 

2.4.13. Optic and Acoustic Modes 

Finding the eigenvectors ym± of (2.84) corresponding to f1m ± is an exer
cise parallel to (2.75)-(2.76). Indeed, using analogous notation, 

m+ k ~ + 
+ ·= ~ = !-La 11-'m - Km ..__ 0 

Pm · m+ :::::' ' 
Y1 !-La Km+N/2 

It follows that the eigenvectors of M-IlK are 

,J, + ._ m+ + m+ _ m+( + + ) 
'I'm ·- Y1 q>m Y2 q>m+N/2 - Y1 q>m Pm q>m+N/2, 

~m- := y'f-q>m + y!f-q>m+N/2 = YT-(Pm -q>m + q>m+N/2), 

(2.88) 

(2.89a) 

(2.89b) 

where we still have to fix yT+ and y!f- adequately for normalization. Now, 
the set of vectors (2.89) constitutes a basis for "f/N, but not a completely 
orthonormal one. From the remarks on the "not far from hermitian" 
matrix (2.83) it follows that (~m, ~m') = 0 for m =!= m'. When m = m' the 
acoustical and optical modes (2.89a) and (2.89b), although linearly indepen
dent, are not orthogonal. The natural description of the diatomic lattice is 
thus in terms of a nonorthogonal basis. This is not too inconvenient from the 
point of view of a good qualitative picture of the workings of such lattices, in 
particular the two-band structure of the frequency spectrum and the identifi
cation of "optical" (or "acoustical") modes with vibrations where the two 
unequal masses are preferentially on opposite sides (or on the same side) of 
the equilibrium position. 

Exercise 2.48. Starting from the equation of motion of the diatomic lattice 
in the e-basis Mf = - Kf, perform a nonunitary transformation f = M - 112g, 
where M- 1 ' 2 is a well-defined diagonal matrix, and multiply the whole equation 
by M- 1 ' 2 • Thus arrive at g = -K'g, K' = M- 112KM- 112 hermitian. Note that for 
first-neighbor interactions in K, K' represents a first-neighbor interaction plus 
two different zero-order interaction springs. 

Exercise 2.49. A nonunitary transformation linking the two-band and 
diatomic lattices can also be set up comparing the eigenvectors xm± in (2.75) and 
ym± for (2.84). The question is to find a 2 x 2 matrix T<ml (for fixed m) such that 
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xm± = TCm>ym±, i.e., A_cm>TCm> = r<m>ficm>. Show that such a matrix is diagonal with 
elements tm := exp(hr/4) tan112(1rm/N) and t;nl, m = 1,2, ... , N/2- 1. 

Exercise 2.50. Find the most general solution vector f(t) for the diatomic 
lattice expressed in terms of the nonorthogonal eigenbasis (2.89). Identify Green's 
matrix in the ,Y-basis. See that upon transforming back to the "physical" &-basis 
the Green's operator matrix representative becomes nonhermitian. 

2.4.14. Short Survey of Other Lattice Systems 

Having worked on different sample cases in this section, we can see that, 
generally speaking, the Fourier transform takes us from the fully coupled 
"physical" basis to a mathematically simpler one. Immediate extensions 
involve lattices with q different springs or masses which repeat a pattern r 
times (soN= qr). These can be treated and the problem reduced to diagonal
izing q x q matrices, which in turn divide the spectrum into q bands which 
raise and lower "wings" with respect to the equal-spring or -mass case. For 
an overall view and physical application we warmly recommend the classic 
book by Brillouin (1946). This book is mainly concerned with actual three
dimensional crystals of infinite extent. Very readable articles dealing with 
finite lattices with different types of constraints and characteristics have been 
written by Louck (1962), Merchant and Brill (1973), and Chaturvedi and 
Baijal (1974). A very interesting problem whose treatment departs from our 
line of work but which nevertheless is important in the physics of semi
conductors is that of a mass defect in the lattice, i.e., one mass being different 
from the others. Articles on this subject have been written by Weinstock 
(1970, 1971) and Maradudin et a/. (1963). Variants of this problem include 
molecular lattices with atomic or bond defects: See Dettmann and Ludwig 
(1965), Dean (1967), and Munn {1969). A qualitative description of the 
behavior of a linear crystal when mass defects are introduced one at a time is 
given by Alonso et a/. (1973) and, for the threshold oscillation frequencies of 
a diatomic lattice, by Valladares (1975). On the more philosophical aspects 
of lattice couplings in very general systems, an article and book by Capra 
(1974a, 1974b) are a must for the interested reader. 

2.5. Energy in a Lattice 

In this section we shall describe the energy present in a vibrating N-mass 
lattice. In the absence of damping we expect the total energy to be conserved. 
Moreover, when we uncouple the system in its eigenbasis, we shall find that 
the individual energies associated with the normal modes are conserved as 
well. 
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2.5.1. Kinetic and Potential Energy in Each Particle 

Consider an N-element lattice described by the vector equation 

IW!If + ct + !Kf = o, (2.90) 

where, as detailed in Section 2.2, IW!I, IC, and IK are the inertial, dissipation, 
and interaction operators. In the "physical" e-basis the coordinates of f, 
fn(t) describe the displacements of the lattice points, while IW!I and IC are 
represented by diagonal matrices JJMnJI and JJcnJJ, Mn being the mass and en 
the damping constant of the nth lattice element. The interaction operator IK 
is self-adjoint and represented by llKmnll [see Eq. (2.19)]. 

At some time t, the kinetic energy of the nth mass is 

(2.91) 

while its potential energy can be found by integrating the force to which the 
particle is subject, Eq. (2.19), along a segment from its equilibrium position 
to its actual positionfn(t), all other lattice elements being fixed: 

(2.92) 

No other forms of energy being present in the lattice, the total energy of the 
nth particle is 

(2.93) 

Substitution of a solution f(t) as found in the last sections into (2.91)-(2.93) 
should give En(t) for each of the individual particles. The description obtained 
in this fashion, however, is not too illuminating. Since the particles are 
coupled, as the lattice motion proceeds in time, potential energy is exchanged 
between the lattice constituents so that none of the individual En(t)'s is 
constant. As before, a simpler description of the quantities involved is 
obtained through wfiting them in a vector-basis-independent form applied 
to the whole lattice. 

2.5.2. Total Energy and Its Conservation 

The total kinetic energy can be written as 

(2.94) 
n n 

using the inner product defined in Section 1.2. The Ek(t) thus defined is 
positive even for complexfn(t). 
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The total potential energy will be the sum of the EnP(t) in (2.93) over all 
n. In setting up this expression we have to be careful in order not to double
count the cross terms fnfm which appear twice. Halving these, we obtain 
the sum 

£P(t) := L EnP(t) =! 2fn*Knmfm = !(f, IKf), (2.95) 
n m,n 

where again we have used the inner product form. The total energy present 
in the lattice is thus the sum of (2.94) and (2.95): 

E = !(f, Mf) + !(f, !Kf). (2.96) 

This expression is both compact and useful, as we can find the effect of 
dissipation on the expected conservation of total energy. Indeed, using the 
hermiticity of M, IK, and C, the reality of (2.94) and (2.95), and Eq. (2.90), 
we find that 

d .. . . .. . . 
dt E = !(f, Mf) + !(f, Mf) + !(f, !Kf) + !(f, !Kf) 

= (f, Mf + !Kf) = - (f, Cf). (2.97) 

The conclusion of (2.97) is that in the absence of dissipation, the total energy 
(2.96) of the lattice is conserved. 

2.5.3. Energy in the Normal Modes 

Our original description in terms of the energy in each lattice element 
was inconvenient because potential energy exchange is taking place. As we 
saw in the last sections, however, the more natural description of the lattice 
is in terms of the eigenvectors of the operator M -lK In what follows, as in 
Section 2.2, we shall consider all masses equal M = M~ and similarly for all 
dissipation coefficients C = d. Let { ~n}~ = 1 be the orthonormal eigenbasis 
of the self-adjoint interaction operator. Then, for 

f(t) = 2Jn(t)~n' (2.98) 
n 

Eq. (2.90) leads to 

(2.99) 

and the solutions for fn(t) were given in Section 2.1. Now, substitution of 
(2.98) into the expression for the total energy (2.96) yields 

E = t 2.,J:Jn(~m' M~n) +! 2.,J:Jn(~m' IK~n) 
m,n m,n 

(2.100) 
m m 
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where we have defined the energy associated with the mth mode (relative to 
the ~-basis): 

(2.101) 

As this depends only on the mth component of the state vector f and cross 
terms are absent, we conjecture (and prove below) that there is no energy 
exchange between the different modes of the interaction operator eigenbasis. 
Moreover, in the absence of dissipation, each of the mode energies (2.101) is 
conserved. Parallel to our proof of (2.97) from (2.96) and (2.90), we can 
show that the energy loss of the mth mode (2.101) is due only to its own 
dissipation term. Using the equation of motion (2.99) for each mode, we 
obtain 

Exercise 2.51. In the expression for the total energy (2.96), assume that not 
all masses are equal, so M is not a multiple M~ and does not commute with K 
Then, in finding the eigenbasis of M- 1 1K [as in the case of the diatomic lattice, 
Eq. (2.82)] we have IK~n = YnM~n for the eigenbasis, and the expression for the 
total energy analogous to (2.100) becomes 

E = t L ci:in + Ynl:Jn)(~m, M~n), (2.103) 
m.n 

which shows there is energy exchange between modes. Examine the options for 
defining conserved "partial" energies in cases when (~m, M~n) is zero except 
for subsets of ~·s. 

2.6. Phase Space, Time Evolution, and Constants of Motion 

In our description of the time evolution of a lattice of mechanical 
elements we have seen that both f(t) and its time derivative f(t) entered as 
initial conditions, basically because the equations of motion are differential 
equations of second order. Our account of the lattice energy, moreover, 
suggests that f(t) and f(t) should be taken on equal footing. The appearance 
of two (or more) quantities intertwined in this way strongly indicates that 
vector space concepts give the most economical description of the system. 
That this is so will be seen in this section. The concept to be developed is 
that of the phase space of a system and the insight it gives into its time evolu
tion and conservation laws. 
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2.6.1. Phase Space of a System 

In our mechanical representation of a coupled system by mass-and
spring lattices, f(t) E "f/N stands for the displacement vector. We define the 
momentum vector,* closely related to the velocity vector f(t), as 

g(t) := Mf(t), (2.104) 

where M is, as before, the inertia operator. In the "physical" e-basis, where 
fn = (en, f) are the individual mass displacements, M is represented by a 
diagonal matrix M = [[Mn[[, where {Mn}~~ 1 are the N particle masses. We 
now construct the 2N-dimensional phase space of N-mass systems, "YfL as a 
vector space with elements 

f, g E "f/N. (2.105) 

In the canonical column-vector realization, !; E "Yfr is represented by 2N 
components, the first being those off and the second those of g; "Yfr is then 
said to be the direct sum of two "f/N spaces ("Yfr = j/N EB "f/N). 

2.6.2. The Simple Harmonic Oscillator 

It will help us to get a better grasp of the phase space "Yfr if we consider 
the one-dimensional oscillator problem examined in Section 2.1 whose 
complete solution is (2.10) and, to start with, disregard damping. As there, 
phase space is two-dimensional, "Yir = Y 2 . We can plot the motion of the 
oscillator in this plane as in Fig. 2.24. If the appropriate scales are chosen 
for f and g, the system is described by a point which moves clockwise in a 
circle. The radius of this circle is proportional to the energy (tM - 1g 2 + lzkj2), 
while the angular velocity is (k/M) 112, the same for all radii. The initial 
position of the phase-space point is / 0 , g0 • In Fig. 2.25 we have represented a 
similar but damped oscillator. 

2.6.3. The Lattice Equations of Motion in Phase Space 

The free lattice equation of motion, Eq. (2.90), may be written as a 
vector equation in Y'fr as 

( ® M - 1 
) (f) d (f) 

-!K -cM- 1 g =dt g · (2.106) 

Indeed, the first row is only (2.104), which identifies g as the momentum 

t Note that in the presence of viscous drag, gn(t) is not the momentum canonically 
conjugate to fn(t) as defined, for instance, in Goldstein (1950, Chapter 6). 
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Fig. 2.24. Motion in phase space of har
monic oscillators with non
zero elongation and velocity. 
Distances between arrows rep
resent equal time intervals. 

Fig. 2.25. Motion in phase space of 
damped harmonic oscillator. 
Distances between arrows 
represent equal time intervals. 

associated to f, while the second row rewrites the original Eq. (2.90) using 
both f and g. Equation (2.106) has the simple structure 

IHlu~ = ~ ~' where IHlu := ( _! _ ~-_11) ; (2.107) 

i.e., it is a system of differential equations which are of first order in time. 
We shall refer to IHlu as the generator of the equation of motion. 

2.6.4. Time-Evolution Operator 

The simplification inherent in the reduction of order of the differential 
equation of motion is considerable. The reason for this is that the time 
evolution becomes a Taylor expansion: 

"' tn an I ( d) I ~(t + 10) = L n' dt'n ~(t') '= =: exp t dt' ~(t') ,_ , 
n = 0 • t to t - to 

(2.108) 

where we can define the exponential of the operator tdfdt' in terms of the 
series expansion of the exponential function. This is in line with our descrip
tion of functions of operators in terms of functions of the representing 
matrices in Section 1.5, although here we have exponentiated a differential 
operator. The validity of the definition depends here on the validity of the 
Taylor expansion of ~(t): we must assume ~(t) to be a set of 2N analytic 
functions oft, i.e., to have a convergent Taylor expansion for all finite t. The 
explicit solutions obtained from Section 2.1 onward indicate that this is 
valid. Now, the vector ~(t) must satisfy the equation of motion (2.107), 
which states that (dfdt')n~(t') = !Hif1~{t'). The linear combination of such 
powers of dfdt' in (2.108) thus yields 

~(t + t0) = exp(t1Hlu)~(t0) (2.109) 

as the general solution of the equation of motion with initial conditions ~{t0). 
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2.6.5. The Simple Lattice Case 

Equation (2.109) is not only simple-looking but useful as well; it leads 
to the explicit expressions of time evolution through the Green's operator 
discussed in Sections 2.2-2.4. Indeed, consider first the case of the simple 
lattice of Section 2.2; M = M1, IC = ®, and IK = -k£. The operator IHJ11 

takes the form 

_ ( ® M- 11) 
IH!n - kA ® 

Its square is already diagonal, 

(
M- 1kA 

IH!fr = 
® 

and its even powers can be written as 

(simple lattice). 

IH!zm = (1 ®)cM-1k£)m 
II @ 1 • 

The exponential series can be then evaluated as 

(1 ®) 00 [t(M -1k£)112J2m 
® 1 m~o (2m)! 

(2.110) 

(2.111a) 

(2.111 b) 

( 
® M-11) oo [t(M-lk£)112]2m+l 

+ [M-lk£]-112 :I I . (2.112) 
k£ ® m=o (2m + 1). 

In the last member we have arranged things so that the cosh x and x- 1 sinh x 
power series arc manifest, noting that only integer powers of the operator A 
are actually involved. This allows us to write 

Gn(t) := exp(tiH!u) = (! :) cosh[t(M - 1k£)112 ] 

(2.113) 

having defined 

(2.114a) 

and 

(2.114b) 



www.manaraa.com

92 Part I • Finite-Dimensional Fourier Transform [Sec. 2.6 

as its time derivative [see Eqs. (1.76)-(1.79)]. The definition (2.114) is not 
new: it has already appeared in Eq. (1.73) forM= 1 = k and corresponds 
exactly to the "f""N Green's operator and its time derivative for the simple 
lattice. We can then write Eqs. (2.109) and (2.113) as 

~(t) = Gu(t - t0)~(t0). (2.115) 

In terms of the f- and /-components and initial conditions, 

(f(t)) = (~(t - t0) ~(t - to)) (~0). 
f(t) G(t - t0 ) G(t - t0) fo 

(2.116) 

In the last expression we have used (2.104) and introduced G(t - t 0) through 
differentiation of (2.114b) in order to replace the 1-2 element of the matrix 
(2.113). This is only a restatement of the time-evolution equation (2.29) and 
its derivative. 

2.6.6. Group Properties 

Several relations in "f""N between the equation of motion and the Green's 
operator become simplified in "f""fi where Gu(t) is the sole time-evolution 
operator. From (2.113) and the composition of two exponential functions 
of the same operator, Eq. (I. 70), it follows that 

Gu(tl)Gn(t2) = Gu(t1 + t2) (2.117) 

as well as 

Gu(O) = ~. (2.118) 

where here ~ is the unit operator in "f""fi. Writing Gn in 2 x 2 matrix form, 
we reproduce Eqs. (2.31). 

The foregoing two equations and the obvious property of associativity 
show that the time-evolution operators have the first three properties of a 
group (Section 1.4). The fourth defining property, that of the existence of an 
inverse operator Gii 1(t) for every Gu(t), is also true here. In fact, 

(2.119) 

as can be seen from its definition (2.113), (2.117), or explicit calculation. The 
set of time-evolution operators Gu(t) for t E ( -oo, oo) thus forms a one
parameter continuous group of time translations generated by IHln. As the 
group elements commute [this can be seen by exchanging t1 and t 2 in (2.117)], 
the group is said to be abelian. Thus far in this section we have been speaking 
in basis-independent vector and operator language. The physical displace
ments of the lattice elements and their momenta are the coordinates of~ in 
&-bases for the displacement and momentum "f""N's in "f""fr = "f""N E9 "f""N. We 
shall assume that the two "f""N's are described by the same basis. 
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2.6.7. EYolution Operator in Normal Mode Basis 

When it comes to the explicit expression for the time-evolution operator 
we can make good use of the Fourier transform since Gu(t) is the exponential 
of IHln and thus will be represented by a matrix with four diagonal blocks 
whenever IHln is likewise represented. As the operators in the 2 x 2 matrix 
form of IHln are, in the simple case (2.110), only multiples of lb. and 1, this 
happens in the Fourier c.p-basis. The matrix equation then uncouples into N 
separate 2 x 2 matrix equations each of the form 

(J:;(t)) = (~m(t - to) ~m(t - to)) (Zm(to)). 
fm(t) Gm(t - to) Gm(t - to) fm(to) 

m = I, 2, ... , N, (2.120a) 

where, from (2.114), 

Gm(t- to)= (M- 1klln)- 112 sinh[t(M- 1kl.n)1 ' 2 ]. (2.120b) 

Of course, this is precisely Eqs. (2.28): Recall that the elements of diagonal 
'6.. are An [see Eqs. (1.62)], and use the identity (ix)- 1 sinh ix = x- 1 sin x. 

In terms of 2N-dimensional phase-space diagrams, the motion in the 
c.p-basis (2.120) appears as in Fig. 2.24 in each of the N Fourier component 
phase-space planes. The oscillation frequencies are different for different m's. 

Exercise 2.52. Differentiating (2.113), show that 

IHlniGn(t) = IGn(t)~~n = Gu(t), (2.121) 

i.e., the time-evolution operator commutes with its generator and is a solution of 
the lattice equation of motion. Compare with (2.30). 

Exercise 2.53. Write out explicitly the time-evolution operator for a general 
interaction operator IK (when M = M1 and C = ®, covering the cases of the 
farther-neighbor interaction and molecular lattices). Show that you need only 
replace kif.. by -IK in (2.113) and (2.114). All the subsequent equations follow 
without change; in particular, the Fourier transform continues to provide a 
basis, where Green's operator is represented by a block-diagonal matrix. 

Exercise 2.54. Consider the case of the diatomic lattice in Section 2.4. There, 
we saw, IW1I and IK are self-adjoint but do not commute. Carry out the exponentia
tion of the generator (2.107) (for C = @)with due care. Show that 

2n ((-M-liK)n @ ) 
IHln = @ (-IKM-l)n (general, undamped). (2.122) 

Following (2.111)-(2.113), one arrives at the expression 

- ( G(t) M -lG(t)t) 
IGu(t) - -IKIG(t) G(t)t ' 

(2.123a) 

which generalizes (2.113) for noncommuting operators. Here, 

(general, undamped). (2.123b) 
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Note that for any well-defined function P, 

M-1p(tw1J-1JK)t = M-1p(JKM-1) = P(M-1JK)M-1, 

IKP(M- 111<) = P(JKM- 1)11< = MP(M- 11K)M- 1K 

[Sec. 2.6 

(2.124a) 

(2.124b) 

This allows one to generate various identities. In particular, it should be noticed 
that if we have found a basis where M - 1 11< is represented by a diagonal matrix, 
as in the treatment of the diatomic lattice in Section 2.4, Green's operator IG(t) 
in "f/N and its time derivatives will also be diagonal and easily calculable from 
(2.123b). However, the block entries of the time-evolution operator (2.123a) 
involve operators M- 1 G(t)t and IKIG(t) which are not diagonal. Not all is lost, 
however, since the expressions for M - 1 and IK are usually simple to calculate if 
we know the basis explicitly. This is the case for the diatomic lattice, where the 
basis in which M - 1 JK is diagonal is given by (2.89). Try implementing this 
program in detail. 

Exercise 2.55. Allow for damping. One can solve exactly the case when 
M = M~ and IC = d using the results in Exercises 1.55 and 1.56, transforming 
IHln to diagonal form, exponentiating, and transforming back [i.e., Eq. (1.71)]. 
Show that this leads to the time-evolution operator in 1/fr given by 

where 

i(iCM(f) = exp(- rt)IIJ - 1 /2 Sinh f IIJ 112 

r = c/2M. 

(damped), 

(2.125a) 

(2.125b) 

(2.125c) 

Compare with the results of Exercise 2.16. Notice that here, too, the Fourier 
<p-basis allows for the explicit solution of the problem. 

Exercise 2.56. Following Exercise 2.17, consider the limit of (2.125) when 
the masses are very small, so damping overwhelms inertia and r = cf2M --o> w, 
while c remains finite. The phase-space description breaks down; f and f become 
uncoupled as the time-evolution operator (2.125) written in the form (2.116) 
becomes diagonal. Here again the Fourier <p-basis is the appropriate one. 

Exercise 2.57. Given the time-evolution operator i[icM(t) in (2.123) and 
(2.125), verify that, indeed, it is generated by IHln ofEq. (2.107). To this end, refer 
to Eqs. (1.76) and (1.79), which are independent of the adjunction properties of the 
operators involved. 

There is another area we should like to present in our study of vector 
analysis in phase space: the role of the symmetry of a system in finding its 
constants of motion. 
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2.6.8. Energy as a Sesquilinear Form 

The expression for the energy, Eq. (2.96), can be generalized to a 
sesquilinear form in 't'"fr. Indeed, we can write for the undamped case 

E(l;b 1;2) := !(fl, IKf2) + !(gb M - 1g2) 

( t t)(!IK ® ) (f2) ,..t = f1 gl ® !M _1 g2 =: ~1IEnl;2. (2.126) 

We shall call lEn the energy operator. The adjunction of 't'"fr vectors and 
operators is defined in terms of the corresponding adjunction of vectors and 
matrix representatives in 'f'"N: ~;t is the row vector whose elements are the 
complex conjugates of those of l; in (2.105), and for 't'"fr operators we trans
pose the 2 x 2 matrix and adjoin the 'f'"N operator elements. Clearly, E(l;, l;) 
(note 1;1 = l; = 1;2) is the energy corresponding to the phase-space state 
vector l;. The conservation of the quantity (2.126) under time evolution of the 
undamped lattice can be proven through calculating 

E(l;l(t), l;2(t)) = l;1(t)1Enl;2(t) 

= l;1{to)Gfr{t - lo)IEnGn(t - to)l;2(t0) 

and showing that this equals E(l;1(t0), l;2(t0)), i.e., that 

G±r(t - to)IEnGn(t - to) = lEn. 

(2.127) 

(2.128) 

One can verify directly that (2.128) is true by replacing the expressions for 
Gh, Gu, and lEu as 2 x 2 matrices with operator elements from (2.123) and 
(2.126). It is more illuminating, however, to use an alternative proof which 
makes use of IH!u, the generator of Gu. Consider infinitesimal time evolution, 
letting St := t - t0 be as small as we please. We can then use the exponential 
series in writing 

Gn(St) = exp(St!Hin) ::: ~ + St!Hin, (2.129) 

where we disregard terms of second and higher order in St. Substitution into 
(2.128) yields 

lEu = (~ + StiHih)IEn(~ + St!Hiu). (2.130) 

Collecting terms in St, we obtain 

11-UhiEn + IEnii-On = ®. (2.131) 

This equation is easier to verify than (2.128), as it only involves products of 
two operators at a time: 

(tM~ 1 1K 
= -IEu!Hiu. (2.132a) 
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Now, the validity of (2.131) implies the validity of the original equation 
(2.128), since for any power n, 

(2.132b) 

and similarly for any sum of powers. Thus, for any well-defined function P 
of IHIII (see Section 1.5), 

P(IHlh)IEu = IEuP( -IH!u). (2.132c) 

When P = exp, Eq. (2.128) is proven. 
We would like to stress that the invariance of the sesquilinear form for 

the energy is a consequence of the operator equation (2.131 ). If we can find a 
basis { ~n}~ = 1 in j/N such that IH!u be represented by a 2 x 2 matrix of 
diagonal N x N blocks, then lEu will be similarly represented since it is 
constituted by the same operators. It follows that we will have N conserved 
"partial" energies since the analogue of Eqs. (2.128)-(2.131) holds for each 
2 x 2 submatrix involving the mth and (N + m)th rows and columns. These 
are the Em"' in Eq. (2.101). 

2.6.9. Other Conserved Sesquilinear Forms and Symmetry 

We can now turn the tables and investigate how to construct conserved 
sesquilinear forms in "Yfr, i.e., to find operators IFu such that 

IF = (IFa IFb) 
II 1Fc IFd 

(2.133) 

is a constant of the motion. The form (2.133) will be conserved if and only 
if Eq. (2.131) holds, IFn replacing the energy operator lEu; that is, 

( ®_ 1 -IK)(IFa IFb) = -(IFa IFb)( ® M- 1). 
fw1i ® 1Fc IFd 1Fc IFd -IK ® 

This embodies the four equations 

f;y1J-11Fa = IFdiK, 

IKIFd = IFaM-\ 

IKIFc = -IFbiK, 

f;y1J-11Fb = -IFcM-1. 

(2.134) 

(2.135a) 

(2.135b) 

(2.135c) 

(2.135d) 

Note that if we have two operators 1FW and 1Ff¥l satisfying (2.134)-(2.135), 
any linear combination of them will also be an operator leading to a con
served sesquilinear form. We thus need only look for a basis of IFu's satisfying 
these equations. If we set IFb = ® = 1Fc in (2.135) so that the last two equations 
are trivially satisfied, one solution to the two first ones is IF a = elK, IF d = 
eM - 1 for any constant c. This yields, for c = !, the energy operator lEu. 
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Consider next setting fa=®= fd and fc = -fb. This leaves then the 
requirement that fb commute with IK and M. In light of Sections 1.6, 2.3, and 
2.4 we see that fb may be any of the operators of the dihedral group which are 
symmetries of the lattice. 

2.6.10. All Constants of Motion for the Simple Lattice 

For definiteness, consider the simple lattice (equal masses and springs) 
where the symmetry group is constituted by rotations IRk and inversions 01 

and 1Km, letting [)) stand for any linear combination of these operators. 
The operators we are examining here will thus have the form 

frr = (_~ ~), (2.136a) 

[)) = L: ak!Rk + L: hzDz + L: Cm1Km. (2.136b) 
k l m 

The associated conserved quantity for a particular lattice state is the form 
(2.133) for ~1 = ~ = ~2: 

F(~, ~) = ~tfrr~ = (f, [))g) - (g, [))f) 

= L Dmn(f:gn - g!fn) 
m,n 

m,n 
(2.137) 

lf we now ask the physical displacements and momenta to be real, the next 
to last member in (2.137) tells us that unless Dmn = - Dnm> the constant 
(2.137) will vanish. If we look up the matrix elements of the dihedral opera
tors [Eqs. (1.89) and (l.99)],we see that the inversions 01 and IKm are symmetric; 
hence they cannot be in [)), which can only consist then of combinations of 
IRk - IR -\ i.e., 

m,n 

(2.138) 
n 

This form is reminiscent of angular momentum. Out of the constant of 
motion (2.133) we can also find "partial" conserved quantities. In the cp
basis the operator IRk- IR-k is represented by a diagonal matrix [Eq. (1.91)] 
which, when substituted into (2.137), leads to 

FkR = -4 :,Z: sin(2TrkmfN) Im(J:gm). (2.139) 
m 
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Since IFn has diagonal blocks in the cp-basis, it follows that (for k not a 
divisor of N) the members of the sum (2.139) are separately conserved, that is, 

Fm ~ ImcJ,:gm), m = 1, 2, ... , N, (2.140) 

are N constants of motion which arise because of the invariance of the lattice 
under rotations. These, together with the partial-wave energies Em"' in (2.101), 
give 2N constants of motion. The lattice with real displacements is expected 
to have no more constants of motion than the parameters needed to specify 
its initial condition: a total of 2N numbers. (See Exercise 2.60.) In terms of 
the N-dimensional phase-space diagram in the cp-basis (Fig. 2.24), the partial 
energies Em"' fix the radii of the circles, while the Fm are related to the angular 
coordinates of the initial conditions. 

Exercise 2.58. Verify directly, using the explicit lattice solutions (2.28), that 
(2.140) are indeed independent of time. 

Exercise 2.59. Using the vector form of the equations of motion, show from 
the third member of (2.137) that dF/dt = 0. The derivation is parallel to (2.97). 

Exercise 2.60. When we examined the choice IFb = liD = 1Fc in (2.134) we 
glossed over pointing out a more general solution to the remaining operators: 
1Fa = IK[]), IFd = tMJ- 1 []1, where []) is any operator (2.136b) embodying the 
symmetry group of the lattice. Follow the argument starting from (2.136) to show 
that for real constants of motion one needs [])'s such that Dmn = D:m. This 
excludes rotations but allows operators of the kind D1 + D- 1 [see Eq. (1.92)] or 
IK's when permitted. Show that, as in finding (2.140), this does not bring in new 
independent constants of motion. 

Exercise 2.61. The sesquilinear form £(1;;1 , 1;;2 ) in (2.126) can be thought of 
as defining an inner product (see Section 1.2) with metric lEn. Note, however, that 
this is not a positive inner product, since there exists a nonzero vector 1;;0 := G:'N) 
such that £(~0, 1;;0 ) = 0. This represents the energy of a lattice at rest with all 
masses having equal displacements. Such a nonnegative inner product does not 
allow for the unique definition of the adjoint of an operator. Nevertheless, one 
can help oneself with the adjunction in "f/N in order to define a unique adjoint 
under E(1;;1 , 1;;2). The conceptual advantage of this point of view is that Eq. (2.128) 
becomes the statement that time evolution is a unitary transformation of phase 
space. The generator of this transformation, IHirr. is such that iiHin is self-adjoint 
under E(~I. ~2): Eq. (2.131). In this connection, recall Exercise 1.33. 

To sum up, we would like to emphasize the role which the Fourier 
transform played in the reduction of the description of coupled systems to 
that of its uncoupled elements. Since a posteriori we see that the solutions 
always involve superpositions of sine waves, it stands to reason that a sine
wave basis of solutions should be the proper approach to the problem. The 
vector space version of this constitutes the essence of the foregoing sections. 
Sine waves are not only periodic but have the property that all their deriva-
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tives-or even finite differences-are also functions of the same kind. We 
can expect them to appear in most problems which involve linear difference 
equations with consta~t coefficients. When the coefficients are not constant, 
other functions appear-the special functions of mathematical physics
which lend themselves to analyses which parallel Fourier analysis. We shall 
have a taste of this in the sections on circular membrane vibration modes and 
oscillator wave functions. 
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3 

Further Developments and 
Applications of the Finite 
Fourier Transform 

In actual applications, most mathematical methods have to deal with finite 
data sets. Thus it is not surprising that the finite Fourier transform is the 
main tool among transforms in applied research. Two topics in communica
tion science have been selected to illustrate the use of the finite Fourier 
transform: signal filters and windows in Section 3.1 and signal detection in 
the presence of noise in Section 3.2. These make use of the operations of 
convolution and correlation. The implementations of these techniques would 
be impossible without present-day computers and an efficient algorithm for 
the numerical work. The fast Fourier transform (FFT) operating principles 
are given in Section 3.3. Finally, in Section 3.4 we let the dimension of the 
vector space grow without bound. In this way we arrive at the Fourier series 
and integral transforms which are the subjects of Parts II and III. The sections 
are mutually independent except for Section 3.2, which relies somewhat on 
concepts developed in Section 3.1. Otherwise, they can be read in any order. 
The References should be consulted if the reader wishes a wider picture of 
the applied technology. 

3.1. Convolution: Filters and Windows 

The operation of convolution between the components of two vectors 
in "f/N does not commonly appear in ordinary vector analysis but is quite 
important in the applications of the Fourier transform to communication 

101 
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theory and technology. We shall first introduce this operation in a rather 
general setting and then particularize to the case of interest as applied to 
signal filtering and windowing. 

3.1.1. The Coordinate-by-Coordinate Product Relative to a Basis 

Let f and g be two vectors in "YN, with coordinates Un}~=l and {gn}~=l 
in the e-basis (see Sections 1.1 and 1.2). Construct now a vector h E j/"N 

whose coordinates in the same basis are 

n =I, 2, ... , N, (3.1) 

i.e., simply the coordinate-by-coordinate product of the first two vectors. We 
denote thus 

h := f(e) g, (3.2) 

defining a mapping from j/N x j/N into j/N which we call the product of 

vectors f and g relative to thee-basis. To determine the coordinates {Jim}~=l 
of h in (3.2) in any other e-basis obtained from the first one through a trans
formation V (see Section 1.2), we perform 

Jim = 2 (V- 1)mnhn = 2 V;;;n1fngn 
n n 

~ c<v> ~'-= L, m,lc,!Jkgl> (3.3) 
k,l 

where 

C<v> ·- ~ v-lv v 
m,k,l ·- ~ mn nk nZ (3.4) 

n 

are the coupling coefficients for the e-basis coordinates. 
The definition of the product (3.1)-(3.2) is quite simple. It does not 

appear in ordinary three-dimensional vector analysis since it does not seem 
to have found any meaningful application. In Fourier analysis, we shall see 
that it is quite useful. 

Exercise 3.1. Show that the bilinear product (3.1)-(3.2) is commutatiV(;, 
associative, and distributive with respect to vector addition. Perform the proof in 
the e- and e-bases. What symmetries are implied for the coupling coefficients 
(3.4)? 
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3.1.2. Coupling Coefficients and Convolution 

If the transformation V in (3.3)-(3.4) IS the Fourier transform, the 
coupling coefficients are particularly simple: 

C(F) - " F* F F m,k,l - ~ nm nk nl 
n 

= N- 312 2 exp[27Tin(m - k - l)/N] 
n 

= N- 1128m,k+l· (3.5) 

The expression for lim is then called the convolution of fn and in: 

lim= N- 112 2Jnim-n = N- 112 2Jm-nin =: N- 112(J*g)m, (3.6) 
n n 

where all indices are counted modulo N. 

3.1.3. Product in the Fourier Basis 

If the product (3.2) is now made relative to the <p-basis, 

k = f (<p) g, 

namely, 

m = 1, 2, ... , N, 

(3.7a) 

(3.7b) 

then the e-basis coordinates of the vectors involved can be found using the 

coupling coefficients (3.4) for the inverse Fourier transform. These are only 

the complex conjugates of (3.5), so that 

kn = N- 112 Lfmgn-m = N-l/2 Lfn-mgm =: N- 112U* g)n. (3.8) 
m m 

These formulas have been collected in Table 1.1 at the end of Chapter 1. 

Exercise 3.2. Using the Schwartz inequality, show that for (3.7)-(3.8) 

lknl 2 ~ N-lllfll 2 llgll 2 • 

Note for the product (3.1)-(3.2) relative to any basis I) thi;; implies that 

3.1.4. Signals 

(3.9) 

(3.10) 

In discussing applications in signal filtering we shall first consider the 
product (3. 7) of two vectors relative to the <p-basis and define what we mean 

1nput 
signal 

s 

Filter 

Q 

out put 
s1gnal 

s' 
Fig. 3.1. Signal filtering. 



www.manaraa.com

104 Part I • Finite-Dimensional Fourier Transform [Sec. 3.1 

here by a signal vector s and a filter 0, showing then that the convolution 
(3.7)-(3.8) describes the output of the signal through the filter (see Fig. 3.1). 

A signal s is an N-dimensional vector whose coordinates in the e-basis 
represent the input data to a "black box" system. This can be a telephone 
conversation, a space probe coded message, or any other form of information 

OQDQQQQQQ 

DDDDDDDDDDDDDDDDD 

a 

. .. 
~ 1.71 1.71 ff6.12 

0 0 

0 0 

c 
0 0 
00 0 0 

0 0 oO 

~ 
0 0 

I 

. -
0 000 0 

00 0 0 

e oo oo 
0 0 

. .. 
Fig. 3.2. (a) Signal. (b) Fourier transform of the signal. Real components are indicated 

by open circles, while imaginary components are denoted by crosses. As is 
customary, we are representing the Fourier-transformed components-the 
frequency domain-as extending on both sides of the m = 0 = N component. 
(c) Filter. (d) Transfer function of the filter [Fourier transform of (c)]. This is a 
low-pass filter which annuls the high-frequency components. Its transfer 
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which has finite length and which from the point of view of experiment can 

be taken to consist of a finite-albeit large-number of discrete data values. 

The consideration of discrete rather than continuous signals is here motivated 

by our mathematical construct but in practice corresponds to the impossi

bility of experimentally handling an actual infinity of data points. In Fig. 

b 

d 

f 

...... \46 

+ . .. 
1. 

+ 

0 

function is real and symmetric under reflections m ~ - m; correspondingly, (c) exhibits 

the same characteristics. The product of (b) and (d) is (f), whose inverse Fourier 

transform is (e), the output filtered signal; (e) is thus the convolution of (a) and (c). 

Note that the suppression of the high-frequency components of the signal results in 

oscillations of the output in the neighborhood of its "discontinuities." 
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3.2(a) we show an example of a signals with coordinates sm n = 1, 2, ... , N. 
In Fig. 3.2(b) the partial-wave content of s is shown: Equation (1.51b) 
states that 

Sn = N- 112 L Sm exp( -2TTimnfN), (3.11) 
m 

which displays the signals as a sum of waveforms cpm with amplitude propor
tional to Sm (see Fig. 1.3). The quantities Pm" := lsml 2 for m = 1, 2, ... , N 
constitute the power spectrum of the signal s . 
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0 

Fig. 3.3. (a) Signal (the same as in Fig. 3.2). (b) Fourier transform. (c) is the high-pass 
filter and (d) is its Fourier transform, i.e., the transfer function of the filter. 
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3.1.5. Filters 

When the input signal s is fed into the "black box" signal processor in 
Fig. 3.1 it is converted into an output signals'. If a linear combination of 
input signals s = c1s1 + c2s2 , ell c2 E <t', is converted into the linear com
bination of the corresponding output signals s' = c1s~ + c2s;, the box acts 
as a linear operator Q and s' = Qs. To find the matrix II Qnmll representing Q 
in a given basis, we can test the box with unit pulses: We let s = En for 

...: 1~6 
+ 

+ 
+ 

+ 

b 
+ 

0 
0 

+ 
' 

~ 

d 

...: 

0 0 

f 

The product of (b) and (d) is (f). The output filtered signal is (e). The latter shows that 
under high-pass filtering it is mainly the "discontinuities" of the signal which remain. 
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n = 1, 2, ... , N successively and then find the components s~ = (em, s') of 
the output signal, thus constructing Qnm = s~ for n, m = I, 2, ... , N. The 
testing can also be done using the waveforms N - 112 exp(- 2TTinmf N), which 
constitute the signals in (3.II ). In this case, we lets = c.pn for n = 1, 2, ... , N, 
find the components s;,. = ( c.pm, s'), and construct iQ as represented by 
Qnm = s;,. for n, m = 1, 2, ... , N. Now, if the black box is such that wave-

forms of a given frequency are converted into waveforms of the same frequency, 
with only a possible change of amplitude and phase, the device will here be 
called a filter. (In actual technology, the meaning of a filter is very often 
widened to include any linear operator.) In this case, for a given s = c.pn 
input, we obtain an output s' = ifn<pn, ifn being a complex number, n = 
I, 2, ... , N. The set of coefficients {ifn}i:'= 1 is called the transfer function of 
the filter. It is easy to see that iQ is then represented in the c.p-basis by a 
diagonal matrix Q = IISnmifnll, and any input signal (3.11) will produce an 
output s' with partial-wave coefficients 

n =I, 2, ... , N; i.e., s' = q( c.p )s. (3.12) 

For a particular wave inputs = <pn, when if.n = I, the wave passes through 
the filter undistorted, while if I ifni > I or I ifni < I, the wave will be enhanced 
or attenuated. 

Exercise 3.3. Show that if ifn, the transfer function of a filter, is complex, its 
phase arg ifn determines a phase shift in the signal waveform. This shift, in units 
of data point separation, is an = - (N/2TTn) arg ifn· Devices such that I ifni = 1 
and an = constant (modulo N) are delay filters. Notice that as we are working 
here with the tools of finite-dimensional spaces, a delay filter would pass the last 
part of the input to the beginning of the output. 

3.1.6. Low- and High-Pass Filters 

If low frequencies are enhanced and high frequencies are attenuated, 
i.e., if ifn is large for n near 0 (recall the coordinates are numbered modulo N 
and see Fig. 1.3) and small for n near N/2, we have a low-pass filter. If high 
frequencies are enhanced and low ones correspondingly suppressed, the filter 
is a high-pass one. In Fig. 3.2(d) we have drawn the transfer function of a 
"rectangular" low-pass filter and in Fig. 3.2(c) its inverse transform. The 
output signal partial-wave coefficients (3.12) are shown in Fig. 3.2(f) and the 
output signal in Fig. 3.2(e). The latter is the convolution of the input signal 
Fig. 3.2(a) and the transform [Fig. 3.2(c)] of the transfer function. In Fig. 3.3 
a rectangular high-pass filter has been applied to the same signal. Note that 
the power spectrum of the output signal (3.12) is simply p;, = Pm8 lifml 2 • This 
is unchanged for delay filters (see Exercise 3.3). 

We are generally interested in upgrading the quality of signals, not in 
degrading it as Figs. 3.2 and 3.3 may suggest. Transmission lines or storing 
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devices act in many ways as filters which attenuate the high-frequency com
ponents which constitute the "fine detail" of a signal. A high-pass filter 
which enhances these components can be used to restore the signal to its 
original sharpness. The proper transfer function of this upgrading filter is 
determined by determining the transfer function of the degrading process. 
Of course, if some frequencies are entirely suppressed, they cannot be 
restored; the effect of noise (to be described in Section 3.2) happens also to 
be most important in the high-frequency region, so practical considerations 
exist which curtail the possibilities of these devices. 

Exercise 3.4. Assume that the input signal is passed through two (or more) 
filters with different transfer functions ij~1 ' and ij~2'. These may be placed in series 
[Fig. 3.4(a)] or in parallel [Fig. 3.4(b)] with a signal-summing device. Show that 

a 

-----+1~-~-+-----·· 
Fig. 3.4. 

the filter arrays can be replaced by a single filter whose transfer function is 
iln = ij~1'q~l in the first case and iln = ij~1' + ij~2' in the second. 

Exercise 3.5. An averaging filter produces an output signal s' whose com
ponents relate to the input signal s as s~ = (sm + sm - 1 )/2. Find the transfer 
function of such a filter to be ij,. = [1 + exp(2TTin/N)]/2, and see that it enhances 
the lower frequencies. Note that, as an operator, the filter can be expressed by 
iQ = (1 + IR)/2, where IR is the rotation operator of Section 1.6. Such l!- filter 
will smooth out a signal and can be expected to reduce the noise (see Section 3.2). 

Exercise 3.6. A dijferencer filter relates output to input by s~ = (sm - sm _1)/2. 
Find the transfer function, and see that it enhances the higher frequencies. A 
differencer filter will pick out changes in signal intensity and accentuate bound
aries much like a Xerox copier when reproducing gray-tone images. Note that 
the second-difference operator A of Sections 1.5 and 2.2 can be used as a filter 
too. Its spectrum tells us that it also enhances higher frequencies. 

3.1.7. Windows 

Our presentation of filtering devices has been overly optimistic. We have 
implied that the signal as a whole can be filtered when needed. A telephone 
conversation or even a speech spectrogram cannot be conveniently handled 
in this way. What must be done in these cases, roughly, is to break the full 
signal into consecutive pieces-time windows-each of which consists of a 
reasonably small set of data points which can be filtered and Fourier-analyzed 
separately. The process of windowing the signal corresponds mathematically 
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to multiplying the signal points s,., n = 1, 2, ... , N, by a window function w,., 
n = I, 2, ... , N, which admits only data points between n1 and n2 and 
rejects all others: As a first example, we consider a rectangular window 
function: 

....: 

a 

c 

e 

r,. = {1, 
0, 

n1 ~ n ~ n2 , 

otherwise . 

1.000000000000000 

(3.13) 

Fig. 3.5. (a) A "smooth" signal [representing the function in Eq. (2.38a)] and (b) its 
Fourier transform, exhibiting vanishingly small high-frequency components. 
(c) A rectangular "time window" and (d) its Fourier transform. The latter has 
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The output signal of such a windowing device is 

S~ = TnSn, i.e., S' = f (e) S. (3.14) 

In Fig. 3.5, we have used the rectangular window function [Fig. 3.5(c)] on a 

"smooth" signal [Fig. 3.5(a)] with little or no high-frequency components 

[Fig. 3.5(b)]. In chopping up a signal in this way [Fig. 3.5(e)], we are paying 

the price,. due to the abruptness of the chop, of introducing spurious high-

....: 1.65 

0 0 

0 0 

-1.15 

~ 2.12 
0 0 

0 0 

d 
0 

0 0 
0 0 

0 0 
0 0 

~ -1.89 

..: 1.15 

0 0 

0 0 

-1.05 

significant components for all frequencies. (e) The chopped signal [the product ot 

(a) and (c)]. (f) Fourier transform of (e) and convolution of (b) and (d). The appear

ance of high-frequency components is an artifact of the abrupt window function. 
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frequency components [Fig. 3.5(f)] which misrepresent the signal. This is an 
artifact of the window function we have used and can be seen to stem from 
the fact that the rectangular window function has a Fourier transform which 
is quite spread out in side lobes, with significant high-frequency components. 
The high-frequency components in Fig. 3.5(f) are a result of s~ being the 
convolution of sn with this spread-out window-transform function. This 
effect is termed leakage. To reduce the leakage effect it is desirable to use a 
window function whose Fourier transform has side lobes as small as possible. 
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Fig. 3.6. (a) A triangular window function and (b) its Fourier transform. Side lobes are 
smaller here than in Fig. 3.5(d). (c) The smooth signal in Fig. 3.5(a) cut by this 
window exhibits smaller high-frequency components than in Fig. 3.5(f). 



www.manaraa.com

Sec. 3.11 Chap. 3 • Further Developments 113 

Instead of a rectangular window, a triangular function (Fig. 3.6) can be used, 
as its Fourier transform has smaller- side lobes. An even better choice is the 
Hanning function, which has a (I - cos B) form in its nonzero range (Fig. 
3.7). The price paid for these improvements in the smoothing of the window 
is that there must be some window overlap in the description of the signal so 
that none of the signal components is slighted for falling at the edge of the 
window. 

a 

tq 
Tj 

IJ1 .... 
0 0 

0 0 

0 0 

b 
0 0 

0 0 

00 

tq 
'";" 

...: 

0 0 

0 0 

0 0 

c 0 0 

0 0 

0 0 

00 

'7 

Fig. 3.7. (a) The Hanning function and (b) its Fourier transform. As the latter has 
negligible side lobes, the windowed "smooth" signal in Fig. 3.5(a), having 
basically no high-frequency components, (c), is expected to be acceptably 
"smooth" as well. 
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Exercise 3.7. Consider amplitude modulation of a carrier wave <pc by a signal 
s0 • The total input signal would then be s, 

(3.15) 

Show that the partial-wave coefficients of s are those of s0 but shifted by c units: 
sm + c ~ sm 0 • Amplitude modulation can be used to transmit a very "smooth" 
signal, constituted only by low frequencies, through a communication line which 
strongly attenuates these frequencies. Shortwave AM radio, for instance, uses the 
transmission properties of electromagnetic waves of appropriately high frequency 
for the coding of low-frequency signals. FM, on the other hand, codes the signal 
into the Fourier transform components sn with proper time windowing. 

We have tried to give an inkling of how the Fourier transform and 
convolution appear in communication. Clearly, to go into more details 
would take us to a very broad field. The reader interested in this area will 
definitely benefit from browsing through the books by Lee (1960) and 
Schwartz and Shaw (1975) and that of Jenkins and Watts (1968) on signal 
processing and applications of spectral analysis as well as the book by 
Brigham (1974) on basic Fourier transform applications, which also contains 
a good list of the source literature. A delightful field of application is that of 
speech analysis and synthesis. A very readable article by Flanagan (1972) and 
a book by Flanagan (1971) are suggested. 

3.2. Correlation: Signal Detection and Noise 

Signal detection in the presence of noise is one of the most important 
problems in communication. The concepts developed in Fourier analysis will 
be used to state some of the relevant variables and to broadly outline the 
strategy of solution. We start by defining the correlation of a string of signal 
data. 

3.2.1. Correlation 

Consider a sesquilinear operation mapping 'f'"N x 'f'"N into 'f'"N relative 
to a basis-for definiteness we shall consider here the ep-basis-as the 
component-by-component product 

m = 1, 2, ... , N, f, g, kE'f'"N, (3.16) 

Except for the complex conjugation in the first factor, this operation is 
basically the product introduced in Section 3.1, and its properties are quite 
similar. The distinct usefulness of (3.16) appears when we translate it to a 
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relation between the &-basis coordinates of the vectors involved. These can 
be found through the inverse Fourier transform 

kn = L: Fnmkm = L: Fnmfi:gm 
m m 

= L Fnm L Fmdt L F;!zgz. (3.17) 
m k l 

Exchanging sums and using (3.5) with an appropriate relabeling of indices, 
we find 

kn = N-1/2 Lfi:gn+m = N-1/2 Lf::-ngm ==: N-112(Jcg)n. 
m m 

n = I, 2, ... , N, (3.18) 

which we define as the correlation between f and g. 

Exercise 3.8. Show that in terms of the rotation operators !Rn of Section 1.6 
the correlation (3.18) can be written as 

(3.19) 

Exercise 3.9. Using the result of Exercise 3.8, the fact that !Rn is a unitary 
operator and the Schwartz inequality show that the norm of the correlation 
vector in (3 .18) satisfies 

llfcgll ~ N 112 llfllllgii- (3.20) 

This is the analogue of a similar result on convolution given in (3.10). 

The correlation assigns a set of numerical values to the "closeness" 
between the signal f and the signal g; if these are real and such that fm and gm 
have generally the same sign, (fcg )0 will be a sum of generally positive terms 
and hence large. If we find some component l among the (fcg )n to be unusually 
large in comparison with the others, we can conclude either thatfm and gm-z 
have generally the same sign or that a large component or components in f 
have met its or their counterpart in g. The number l gives the lag between 
the two. 

3.2.2. Autocorrelation 

Examine now the case when f = g, the autocorrelation function of f 
being the kn in (3.18). Of course 

(3.21) 

but what happens to kn for n "close" to 0? If the signal f is such that the fm 
are a" smooth" or slowly varying function of m,fm±l will still have generally 
the same phase and magnitude as fm, and so will fm ± 2, etc. The correlation 
function kn is thus expected to have a more or less broad real peak around 
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Fig. 3.8. (a) Periodic signal and (b) its autocorrelation. (c) "Two-peak" signal [Fig. 
3.2(a)] and (d) its autocorrelation. (e) "Smooth" nonperiodic signal and (f) its 
autocorrelation. 

n = 0. The width is determined by the distance j at which fm±i still has the 
same phase on the average as fm, before sign cancellations start occurring in 
the sum (3.18). If now the signalfm is periodic in m with period P (P divisor 
of N), thenfm = fm+lP for I integer and k1p = k0• The correlation function 
will exhibit peaks spaced by P units and will itself be periodic. In Fig. 3.8(a) 
is a periodic signal and in Fig. 3.8(b) its correlation function; other signals 
[Figs. 3.8(c) and (e)] also have characteristic correlation functions [Figs. 
3.8(d) and (f)]. 
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Exercise 3.10. Show that the autocorrelation function kn = (fcf)n is even 
inn and cannot have a value larger than ko in (3.21). You can use the Schwartz 
inequality on (3.19). 

Exercise 3.11. Show that the Fourier transform of the autocorrelation/unction 
is the power spectrum p/ = lfnl 2 of f. 

The autocorrelation function kn, we have seen, gives a numerical 
value of the "degree of similarity" between a signal and its image shifted 
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Fig. 3.9. (a) Constant-density noise and (b) Gaussian noise. The histograms to the right 
divide the ordinate range in 20 "bins," showing the characteristics of the 
distribution. (The latter were built on the basis of 1024 points rather than 64, 
as in the figures, in order to reduce random fluctuations.) (c) and (d) are 

by n units. Suppose now we construct a "signal" v whose values vm, m = 

I, 2, ... , N, are extracted from a random-number table or computer genera
tor. Since no two values of the list are causally related, we can expect the 
autocorrelation function to have only a large k 0 value, but all other kn's to 
fluctuate randomly. In Fig. 3.9(a) this is shown for a vector v constructed by 
a computer intrinsic "function" which produces a random sequence of real 
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the autocorrelations of (a) and (b), respectively., Notice the peak at the N = 0 
component of the correlation vector and the otherwise uneventful noise-like appear
ance of all other components. (e) and (f), Fourier transforms of (a) and (b), also have a 
noise-like character, showing comparable contributions from each frequency range. 

numbers between - 1 and 1 with constant probability density. This means that 
as the Jist of generated numbers tends to infinity, the proportion of those which 
fall in any interval (v - !:wf2, v + /).v/2) c ( -1, 1) is indepenent of the 
value of v. A histogram to the right of the figure shows this. The autocorrela
tion function in Fig. 3.9(c) is seen to exhibit only the peak at k 0• The same 
happens with random sequences with Gaussian probability densities [Fig. 
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Fig. 3.10. White noise (a) built by requiring that all Fourier partial-wave coefficients 
have unit modulus (open circles) while their phases (crosses) be randomly 
distributed in ( -Tr, Tr) with constant density (histogram at the right). In terms 
of the real and imaginary parts of the Fourier coefficients (b), the probability 
density has a esc TrX shape (see the histograms at the right-unbroken lines for 
the real parts and dotted lines for the imaginary parts). By inverse Fourier 
transformation, white noise (c) is obtained. As before, all histograms were 
built with 1024-component vectors, while the figures have only 64 points. 
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3.9(b)]. Figures 3.9(e) and (f) are the Fourier transforms of Figs. 3.9(a) and 
(b). 

Exercise 3.12. Are there reasons to expect that as N grows without bound, 
kn--+0 for n # 0? 

3.2.3. White Noise 

Signals with random components are genericaJly referred to as noise. 
This is a good working definition which describes the kind of background 
"signal" produced by the thermal agitation of electrons in radio or radar 
receivers and amplifiers. A broader "definition" of noise in communication 
is any "unwanted" part of the signal; of course this varies from case to case .. 

As Fig. 3.9 suggests, the definition of noise is not unique. For standard
ization purposes in filtering, it is common to define white noise as that which 
has the same power spectrum at all frequencies, i.e., such that Pn" = lvnl 2 = 
constant, so that only the phase of individual Fourier coefficients takes a 
random sequence of values. This is shown in Fig. 3.10. 

Exercise 3.13. Note that a filter Q can change the characteristics of the 
noise input v. Consider an averager and a differencer filter, and examine the 
correlation of the output. See that for these two cases ki' = ±iko• + random 
terms. 

3.2.4. Signal Detection and Filtering of Noise 

Noise is the part of the input signals we usually want to get rid of. We 
considers= s0 + v, s0 being the "true" signal and v the noise. In detecting 
signals s0 we should separate clearly two kinds of situations: first, when we 
have a fair idea of what s0 should be and we are interested in detecting the 
presence or absence of the signal, and second, when s0 is unknown and only 
its overall characteristics-as distinct from those of noise--can be used for 
filtering s. The first situation corresponds, for instance, to radar technology, 
while the second was typical of early telephony. 

The detection of known signals amid background noise is usually tackled 
by finding the correlation, in a time window, of the incoming signal. If sis a 
train of square pulses (Fig. 3.11), it has a correlation function which is quite 
distinct from that of v [Figs. 3.9(c) and (d)]. The correlation of s = s0 + v 
is s0cs0 + s0cv + vcs0 + vcv. The shape of the first term, when present, 
can be recognized in Fig. 3.11. Moreover, the correlation can also be used to 
detect any change undergone by the signal. The return pulse of a radar 
bouncing off the surface of a planet, for instance, will yield the distance to the 
body by the travel-time lag; the Doppler shift due to the planet's radial 
velocity away or toward the observer will lengthen or shorten the pulses, 
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Fig. 3.11. Signal detection amid noise by correlation. (a) Periodic signal and (b) its 
correlation. (c) Constant-density noise and (d) its correlation. (e) Signal plus 
noise at a ratio of 1:3. The noise masks the signal, whose presence can 

while the pulse shape will be changed by surface characteristics such as 
rugosity and ground reflexivity. 

For the filtering of signals of which we have no a priori knowledge, the 
solution is not so clear-cut, and in fact the information of the "true" signal 
s0 is never fully retrievable. An averager filter (see Exercise 3.5) has a transfer 
function which attenuates the high-frequency components. If these are 
suppressed in the input (Fig. 3.12), the total noise power C.Ln lvnl 2) will be 
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nevertheless be detected by (f) correlation. The observed peaks and their periodicity 
match those of the signal, so we conclude that (e) contains a signal. The more data points 
we have, the more effective the detection by correlation becomes. 

diminished to a greater extent than the total "true" signal power Cl:n J.Sonl 2). 

The output is a "smoother" signal in which s0 should be recognizable. If the 
noise-to-signal ratio (total noise power/total "true" signal power) is large, 
this method-or any other filtering scheme-may not prevent loss of signal 
information. 

A generally successful way to overcome the difficulties inherent in 
signal filtering is to digitalize the data to be transmitted, coding them into 
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Fig. 3.12. Partial noise elimination by filtering. (a) A "smooth" signal [Fig. 3.5(a)] plus 
25% white noise [Fig. 3.10(c)]. (b) The Fourier transform of the noisy signal 
contains large low-frequency components due to the signal [Fig. 3.5(b)] and 
essentially a constant high- and low-frequency noise background [Fig. 3.10(b)]. 
Filtering with a low-pass device whose transfer function is shown in Fig. 3.5(c) 
in the frequency domain, we obtain (c) the filtered signal. The small wavelets 
are the noise residue. Narrowing the filter's passing band would only distort 
the signal farther from its true shape. Broadening it would allow for more 
noise wavelets. 
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pulse sequences of "expected" shape [as in Fig. 3.ll(a)] such that on arrival 
the message can be detected by correlation. On-the-spot planet photographs 
are scanned as by a TV image, but tones of gray are divided into, say, 32 
values. The transmitted data will then consist of a string of numbers in this 
range, each in binary code whose digits, 0 or 1, are given by the absence or 
presence of a pulse. In this way, we trade the range of possible shades of gray 
(which is not too important, as 32 tones give a very accurate rendering of the 
picture) for protection against image degradation. 

As in Section 3.1, the reader is urged to explore the source literature if he 
wishes to have more specialized information on the actual signal detection 
technology. See also the books by Papoulis (1965), Schwartz et a/. (1966, 
1970, and 1975), Gold and Rader (1969), Otnes and Enochson (1972), 
Stieglitz (1974), and Bloomfield (1976). 

3.3. The Fast Fourier Transform Algorithm 

Sections 3.1 and 3.2 point to the fact that the actual evaluation of the 
finite Fourier transform has a considerable range of application. Although 
the number of data points must in practice be finite, it can be very large, say 
on the order of 103 or 10\ requiring a considerable amount of expensive 
computer time. An algorithm for the evaluation of the Fourier transform 
involving a drastic reduction in its computational complexity-by a factor 
of N/log2 N-was discovered recently by Cooley and Tukey [see Cooley and 
Tukey (1965); see also Cooley eta/. (1967)]. 

3.3.1. Computational Complexity of the Longhand Fourier Transformation 

Let us analyze the number of arithmetic operations required to calculate 
the Fourier transform {fm}~= 1 from a given set of complex data points 
Un}~~ 1 . The "longhand" calculation proceeds by 

N 

fm = N - 112 L fn exp(2TTimnfN) form= 1, 2, ... , N. (3.22) 
n=1 

First, (a) one has to calculate exp(2TTi/N) and then its N- 1 powers, as these 
will appear as factors in (3.22). Then (b) one has to perform the (N- 1)2 

products offn's with these exponentials (for norm equal to Nthe exponential 
factor is I, so no product is necessary). Last, (c) there are N(N- 1) sums to 
be performed. The overall factor N- 112 need not be considered, as it is 
usually absorbed into a redefinition of the Fourier transform in actual 
applications. 

Typical computer times required for the operations of real, single
precision, floating-point sum and product, including memory access, are on 
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the order of 25 p.sec for the PDP-11/40, a medium-small computer. A 
medium-large computer such as the Burroughs 6700 requires around 7 p.sec. 
If we round off the complexity of (3.22) as N 2 sums and N 2 multiplications, 
the computer work needed for N around 1000 is comprised of some 2 million 
complex operations. This represents some 6t min on the first and 2 min on 
the second computer. Even if machine time were unlimited and free, the 
Fourier transform would not often be used for real-time data analysis unless 
a considerably more efficient algorithm were found. The fast Fourier trans
form (FFn, for N = 210 = 1024, leads to a 100-fold saving factor. 

3.3.2. N Divisible by 2 

Suppose that N is divisible by 2. The index n can be replaced by 
2r + k - 1 and the sum (3.22) split into 

1 N/2 

fm = N- 112 L L l 2r+k- 1 exp[21Ti(2r + k- 1)m/N] 
k=Or=l 

1 N/2 

= 2- 112 L exp[21ri(k- 1)m/N](N/2)- 112 L l 2r+k- 1 exp[2?Tirmf(N/2)]. 
lc=O r=1 

(3.23) 
The second sum, 

N/2 

R.m := (N/2)- 112 L 12r+k-1 exp(41Tirm/N) = NN/2+m• (3.24) 
r=1 

is the N/2-dimensional Fourier transform, fork = 0, of the odd-numbered 
In's and of the even-numbered In's for k = 1. The determination of all the 
R.m's in (3.24) involves 2(N/2)2 multiplications since we have two values of k 
and we need perform the Fourier transform only for m = I, 2, ... , Nf2. 
Once these have been calculated, we can merge the]I's as 

lm = 2- 112[exp( -2?Tim/N)!J,m + lf.m], m = I, 2, ... , N. {3.25) 

This process involves N products. The total number of multiplications in the 
algorithm (3.24)-(3.25) is thus N 2/2 + Nand about the same for sums. For 
large N this represents roughly a halving of the computation time. 

3.3.3. N Divisible by 2P 

The reduction in computation complexity need not stop here: the 
N/2-dimensional Fourier transform (3.24) may be subject to the same process 
when N/2 is even. We need only replacer by 2s + k 2 - 1, s = I, 2, ... , N/4, 
defining a /:2~c 1 as the N/4-dimensional transform of the In's with n = 
0, I, 2, 3 mod 4 and the merging (3.25) between the]2's and/I's. The general 
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recursion for N divisible by 2P involves, first, the (2 -p N)-dimensional Fourier 
transform [which we write without the constant (2-PN)- 112, which should 
go in front], 

2-PN 
!fp···k2k1 ,m := L fnp(r,k) exp(2P+l7TirmjN) = !fp···k2k1 ,2-PN+m> (3.26a) 

r=l 

where 

np(r, k) := 2Pr + 2P- 1(kp - I) + · · · + 2(k2 - I) + (k1 - I). (3.26b) 

The following p steps are the mergings (again, eliminating the factor 2 - 1' 2), 

J!f.---~···k1 ,m = [exp( -2q7Tim/N)fo\.-r··k1,m + ]f"•-c·k1,m], 

m = 1, 2, ... , 2-q+ 1N, q = p,p- I, ... , 1, (3.27a) 

where the last step is 

J' o ·= N -1121' Jm · Jrru m = I,2, ... ,N. (3.27b) 

The number of multiplications in the algorithm (3.26)-(3.27) is (2-PN)2 for 
the Fourier transform (3.26) and N for each merging. 

3.3.4. N = 2V 

The regression in the dimension of the Fourier transform ends when it 
reaches 1, since then we have no sums or multiplications at all. Thus consider 
N to be the vth power of 2, i.e., N = 2v. Then, for p = v, 

as rand m can only take the value 1, and 

nv{l, k) = 2v+l + 2v(kv- 1) + ... + 2(k2- 1) + (kl - 1) 

= 2vkv + 2v-lkv-l + · · · + 2k2 + kl + 1. 

(3.28a) 

(3.28b) 

It is only left for us to perform the v mergings (3.27) for q = v, v - 1, ... , 1. 
As each merging involves N products and N sums, the total number of 
operations of each type is vN or 

Nlog2 N. (3.29) 

The computational complexity of the fast Fourier transform algorithm 
(3.27)-(3.28) is thus significantly smaller than that of the direct formula (3.22). 

3.3.5. Regression and Binary Digit Inversion 

In Fig. 3.13 we have displayed graphically the regression and merging 
for the fast Fourier transform for N = 8 = 23 • We started in the leftmost 
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Fig. 3.13. Regression and merging of the fast Fourier transform algorithm. 

column where all the fm depended on all the In· From there we proceeded to 
the second column having two parts, the four /rf.m's depending on the even 
In's and the four /l,m's on the odd ones. From here we passed to the third 
column which has four pairs of /(;2 k 1 ,m's, each depending on two In's. Last, 
we have eight/:3 k 2 k 1 which are In's. Note particularly that the string olbinary 
digits k 3k 2 k 1 is the binary number representation oln - 1, which is written to 
the left of the first column. This is a general property which can be seen from 
(3.28b ). It should also be noted that the overall shuffling of the entries in the 
first and last columns is such that it inverts the digit order of the binary repre
sentation of the row label. The merging procedure can be followed in Fig. 3.13 
from right to left: each of the pair of /k2

2 k 1 ,m's, m = 1, 2, is constructed 
from the rightmost column entries to which it is connected, the upper link 
being multiplied by the phase in (3.27). Following suit, each of the f,t1 ,m's is 
obtained through the merging of the /(;2 k 1 ,m's to which its block is linked 
and similarly for the /m's. 

3.3.6. A Short Survey of the Literature 

Figure 3.14 shows a FORTRAN program which calculates the direct 
and inverse Fourier transforms using the FFT algorithm. This program is 
not the ultimate in computation efficiency but should be easy to implement 
by the interested reader on his local computer. The software in most com
puting centers includes more than one version of the FFT. These are variants 
which follow either the Cooley-Tukey or the Sande-Tukey algorithms 
(Cooley and Tukey, 1965; Gentleman and Sande, 1966). Other fast algorithms 
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SUBROUTINE FFT<X,N,NU,IT> 
COMPLEX X<Nl,E,T 
JII=N/2 
Nlll=NU-1 
K=O 
Z=JT 
U=1./SQRT<FLOAT(N)) 
DO 3 l=LNU 

1 DO 2 J=LM 
A=INV(K/2**NU1,NU)*6,283185/N 
E=CMPLX<COS(A),Z*SJN(A)) 
L=K+1 
L.M=L+M 
T=X<LM>*E 
X<LM>=X<L>-T 
X<U=X<U+T 

2 K=K+1 
K=K+M 
IF<K.LT.N) GO TO 1 
K=O 
NUl=flU1-1 

3 M=M/2 
DO 4 K=LN 
J=INV(K-LNU>+ 1 
IF(J,LE.K) GO TO 4 
T=X<K> 
X<K>=X(J) 
XW=T 

q CONTINUE 
DO 5 K=U 

5 X<K>=X(K)*U 
RETURN 
END 
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FUNCTION !NV(J,NU) 
J1=J 
INV=O 
DO 1 l=LNU 
J2=Jl/2 
INV=INV*2+Jl-2*J2 

1 Jl=J2 
RETURN 
END 

Fig. 3.14. A FORTRAN IV subroutine 
which performs Fourier 
transformation through the 
FFT algorithm. It converts 
the input complex vector X 
of dimension N and NU = 
Jog. N into its Fourier 
transform if IT = 1; if 
IT = -1, the vector X is 
converted into its inverse 
Fourier transform. The 
function INV effects the 
binary bit inversion. Note 
that the output component 
X(I) stands for the Nth = 
Oth Fourier coefficient and 
that all other components 
are correspondingly shifted 
to one higher value. 

have been developed for arbitrary N which work on similar principles 
(Bergland, 1967, 1968, 1969; Rader, 1968; Singleton, 1968). When the data 
arrays are very large and exceed the machine memory storage capacity, the 
use of auxiliary memory devices such as disk or tape has to be integrated 
properly into the algorithm. These problems have been tackled (Buijs, 1969; 
Singleton, 1967). Convolution and correlation of finite signals can also be 
profitably handled through the FFT in their many applications. The calcula
tion of the convolution (3.8) or correlation (3.18) of two vectors involves N 2 

complex products. As the FFT takes only N log2 N operations, we may 
proceed to use the Fourier transform first for the two coordinate sets, 
multiply them in the q>-basis [Eqs. (3.7b) or (3.16)], and then Fourier
transform back. The number of operations in this roundabout way is 
3N log2 N + N, which is less than N 2 for N > 16. 

The actual applications of the fast Fourier transfmm algorithm cover a 
very wide range. Some examples of what can be found in the literature are the 
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articles by Stockham (1966), Singleton and Poulter (I967), Welch (1967), 
Glisson and Black (1969), Liu and Pagel (1971), and Becker and Farrar 
(I972). For the reader interested in a more detailed exposition and bibliog
raphy of this rapidly growing field and its applications, we suggest the book 
by Brigham (1974) as well as the special issues of the IEEE Transactions on 
Audio and Electroacoustics AU-15 (June I967) and AU-17 (June I969). 

3.4. The "Limit" N-+ oo: Fourier Series and Integral Transforms 

Up to now we have dealt with complex vector spaces "f""N with N arbi
trary but finite. We shall now let N grow without bound and examine the 
behavior of the Fourier transform. The "limit" N-+ co is not meant to 
imply that "f""N tends toward a ""f""«> " since insofar as vector spaces are con
cerned, no convergence of the kinds familiar to the reader is defined. Yet for 
coordinates, inner products, and norms such a limit makes sense if focused 
properly. Moreover, it provides a reliable intuitive grasp of the properties of 
infinite-dimensional vector spaces. 

3.4.1. (2N + I)-Dimensional Spaces 

For the following, it will prove convenient to consider (2N + I)
dimensional spaces "f""2N+ 1 where basis vectors are numbered by indices with 
the range -N, -N + I, ... , -1, 0, 1, ... , N- I, N. The Fourier trans
forms between the coordinates of a vector in thee- and cp-bases [Eqs. (1.51)] 
become 

N 

fm = (2N + 1)- 112 L In exp[2TTinmj(2N + 1)], (3.30a) 
n= -N 

N 

In= (2N + 1)- 112 L fm exp[ -2TTinm/(2N + 1)]. (3.30b) 
m=-N 

Recall that, to start with, Eqs. (1.51) defined the range of the indices as con
gruent modulo the dimension of the space. We shall now introduce a new 
indexing system for the vectors in the cp-basis, defining 

X := TT(2m + I )j(2N + I), 

so that, for m = - N, ... , N, x will range in steps of 

f1x = 2TTj(2N + I) 

(3.31) 

(3.32) 

from -TT + 11x to TT, and while the numbers m are considered modulo 
2N + 1, the numbers x are considered modulo 2TT. We shall also define the 
set of quantities related to the cp-basis coordinates off as 

l(x) := [(2N + 1)j2TT]li1m, (3.33) 
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which can be seen as a function f of 2N + 1 equidistant points on a circle. 
When N grows without bound these points will become dense on the interval 
(-'IT, 7T]; the point -7T is excluded from the interval as it is congruent with 7T. 
Changing dummy indices, Eqs. (3.30) appear as 

N 

f(x) = (27T)- 112 L fn exp(inx) exp[ -in7T/(2N + 1)], (3.34a) 
n= -N 

fn = (27r)- 112 ~ D.xf(x) exp(-inx) exp[in7Tj(2N + 1)]. (3.34b) 
x= -n+ll.x 

The substitutions (3.31)-(3.33) can also be made for the Parseval identity, 
Eq. (1.43), which now reads 

(f, g) = ~ fn*g,. = ~ D.xf(x)*g(x). {3.35) 
n= -N x= -n+Ax 

3.4.2. Fourier Series 

The reader can see that Eqs. (3.34) and (3.35) lend themselves quite 
naturally to the limit N-+ oo: the sums over x have the right form to be 
turned into Riemann integrals. Some precautions must be taken, though. 
We introduce first, for every function h(x) of the (discrete) variable x, a step 
function h<N>(x') over the continuous variable x' by 

h<N>(x') = h(x), x' E (x - D.x/2, x + !lx/2]. (3.36) 

See Fig. 3. I 5. By this device, the Lx !J.x ... can be turned into r, dx' . ... 
We can assume (at this stage) that the limit of h<Nix') as N -~ oo is a "proper" 
function h(x') of x', e.g., a continuous function with a finite number of 
discontinuities so that it is Riemann-integrable. Next, Eq. (3.35) for f = g 
states that the sum of the now-infinite series in the middle term must equal 

r, .. ' A ~ A ~ 
A. ' ,, 't i...h.. i• 

~ ,f'P1,; ,i \ rtJ ,, ~ f! 1 i ['1 
I '-">. i: Q;r, /,~j 1 " 

1 =; ,. ! 1.: \! _Aj \.l rr '·' ~~ ~ \i ; '' rw- ' I ' 

1\1 \!!: ~ .r \1!1 \1! 
.i l-/.· \ li '•' Llx ~ .,' 1,.,, ,,J :.· ..,.. ~ ~ -,.. ~ 

-n~--------------~--------------~n 

Fig. 3.15. An N-step function in ( -1r, 1r) approximating a continuous function in the 
limit N--.. oo. 
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the assumed definite value of the integral. The coefficients Un}:'= _ oo must 
satisfy some summability condition. They cannot all be equal, for instance. 
A finite number may be nonzero, or we may ask for appropriate decrease 
conditions for In as n __,.. oo. In particular, we shall agree not to allow any In 
"near to" N to keep a finite value as N __,.. oo. If these (admittedly vague) 
conditions are met, the sum in (3.34a) becomes a series where the exponential 
factor exp[TTin/(2N + I)]__,.. I as N __,.. oo, and the same happens in (3.34b). 
The pair of equations then becomes 

00 

l(x) = (2TT)- 112 L; In exp(inx), (3.37a) 
n.=- 00 

In = (21T)- 112 f_", dxl(x) exp( -inx), n = 0, ±I, ±2, .... (3.37b) 

The first of these is the Fourier expansion of l(x) in terms of the functions 
exp(inx), n E ~ (the set of integers), with Fourier partial-wave coefficients 
{ln}ne~· These coefficients can be obtained from the original function by the 
second equation. Equations (3.37a) and (3.37b) are also referred to as the 
Fourier synthesis and analysis of the function l(x). Finally, the Parseval 
identity (3.35) becomes 

00 f" (f, g)= n~oo ln*gn = _, dxl(x)*g(x). (3.38) 

The precise range of validity of the Fourier series pair (3.37) and Eq. (3.38) 
is given by the Dirichlet conditions, which will be proven independently of 
this construction in Section 4.2. We would only remark here that whenl(x) 
is a trigonometric polynomial of degree M, i.e., when the sum in (3.37a) is 
finite and n bounded, 

IM(x) = (2TT)- 112 L; In exp(inx), (3.39) 
fni«M 

then (3.37b) can be immediately verified by multiplying by (2TT) -l/2 exp(- imx) 
and integrating x over ( -TT, TT), using 

, {[i(n - m)]- 1 exp[i(n - m)x]l~, = 0, 

I dx exp[i(n - m)x] = J" 
_, dx = 2TT, _, 

n "# m, 

n = m. 

(3.40) 
Indeed, 

(2TT)- 1' 2 J:, dxiM(x) exp( -imx) 

= (2TT)- 1 L; In f" dx exp[i(n - m)x] = lm, (3.41) 
lni«M )_,. 
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and (3.38) can be similarly proven using (3.37b) and (3.40). In restricting the 
degree of the polynomial to finite M, we have avoided the question of whether 

the infinite series (3.37a) converges tof(x) for all x and what to do if the series 

diverges. 

3.4.3. Basis Vectors 

Since in Part II we shall tackle these questions using elements of func

tional analysis, let us have a closer look here at the vector space aspects of 
f 2N + 1 as N grows without bound. Parallel to the redefinition of the coor

dinates (3.33) of a vector f, we define the basis vectors 

(3.42) 

where x and mare related by (3.31). These also constitute a basis for f 2N+I, 

with coordinates 

They are a set which is orthogonal, but not orthonormal, as 

(3.44) 

where ax,y is the Kronecker a in the indices x and y. The coordinates of a 
vector fin the 5-basis are thus 

i l'l.yj(y)(5x, Sy). (3.45) 
Y= -n+~Y 

3.4.4. The Dirac a 

Whereas all expressions before (3.42) had a clear meaning as N---* oo, 

step functions (3.36) being used and assumed to converge to Riemann

integrable functions, the step function of y corresponding to (Sx, Sy) for 
fixed x is a rectangle of width l'l.y = 2Trj(2N + 1) and height Ifl'l.y (thus of 

unit area) centered in x. As N---* oo, l'l.y---* 0. If we take Eq. (3.45) seriously, 
it tells us that such a "function" in the "limit" N---* oo has the properties 

8(x- y) := (Sx, Sy) = a(y - x), 

a(x - y) = 0 for x i= y, 

f" dya(x- y)f(y) = f(x) = (Sx, f). 

(3.46a) 

(3.46b) 

(3.46c) 

The symbol 8(x - y) defined by (3.46b) and (3.46c) is the Dirac a. (The 

definition can be made slightly weaker.) It is not a true function. In the 
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rigorous framework of distribution theory, the second equality in (3.46c) is 
the definition of Sx as a functional or distribution, i.e., a mapping which 
assigns, to every function f in some class, a number f(x). The intuitive 
development we have followed here is one of the standard approaches in 
mathematical physics, which views the Dirac o as the symbol indicating the 
limit of a sequence of integrals containing the continuous function f(x) and 
a rectangle function oN(x - y) of unit area centered on x whose width 
vanishes as N ___,. oo. This is equivalent to the first equality in (3.46c); that is, it 
"punches out" the value of the test function f(y) at the point x. 

From the point of view of vector analysis, the functionf(x), x E ( -TT, TT], 
can here be seen as the coordinates of a vector fin the 8-basis [second equality 
in (3.46c)], while its Fourier partial-wave coefficients {fn}nE.ZO are the coor
dinates of the same f in the 8-basis. 

3.4.5. Fourier Integral Transforms 

Another way in which theN___,. oo "limit" of the finite Fourier transform 
leads to integral transforms is the following. Consider again the pair of 
equations (3.30) in "Y2N + 1 for growing N and introduce new indexing 
variables in both the 8- and q>-bases as 

q :== [2TT/(2N + !)]112m, p :== [2TT/(2N + J)]l 12n. (3.47) 

For n, m = - N, ... , N, q and p will correspondingly range over 2N + I 
points spaced by decreasing intervals 

b.q = [2TTj(2N + 1)]112 = b.p 

between, approximately, ± (TTN)112• Now define the functions 

(3.48) 

f(q) = [(2N + I)j2TT] 11:J'm, /(p) = [(2N + I)j2TT]l1-:fn (3.49) 

on these points. Substituting these expressions into (3.30) and following the 
same procedure as before in defining step functions.J;Niq) and};NJ(p) for the 
continuous variables q and p (Fig. 3.15), assuming that as N ___,. oo these step 
functions converge to Riemann-integrable functions in the expanding 
integration interval and substituting J dq for L: D.q, etc., we arrive at 

f(q) = (2TT)- 112l: dpf(p) exp(ipq), 

j(p) = (2TT)- 1' 2 1: dqf(q) exp( -ipq), 

From the Parseval identity (1.43) we find similarly 

q,p E f!d. 

cr, g) = LXJ"' dqf(q)*g(q) = L: dpj(p)*g(p). 

(3.50a) 

(3.50b) 

(3.51) 
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These equations are the analogues of (3.37) and (3.38). The functionj(p) is 

the Fourier integral transform of f(q), and the latter the inverse Fourier 
transform of the former. A closer examination of the validity of (3.50)-(3.51) 

for different classes of functions, not necessarily integrable in the sense of 
Riemann, will be undertaken in Part III. Again, orthogonal bases {5q} and 

{SP} can be defined so thatf(q) = (5q, f) andj(p) = (SP, f), leading to Dirac 
8's with properties (3.46b) and (3.46c) on the full real line Ge. 

The description of infinite-dimensional spaces as "limits" of finite

dimensional ones has been made here with the purpose of giving an intuitive 
grasp of the subject. In Parts II and III a physicist's a Ia Dirac approach will 

be given. We shall not embark here on a mathematically complete survey of 
this topic in part because of space and time but mainly because once the 

overall picture is drawn and the relevant pitfalls are pointed out, the tools of 
infinite-dimensional vector analysis can be used with the same operational 

facility as in the finite-dimensional case. 
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Part II 

Fourier and Bessel Series 

This part presents the expansion of functions on finite intervals in series of 
oscillating exponentials or in Bessel functions. Applications include the 
description of diffusion and elastic media with periodic or fixed boundary 
conditions. 

Chapter 4 reviews the relevant aspects of function vector spaces and 
covers Fourier series. The first four sections present the basic Dirichlet 
theorem on existence and convergence of the Fourier series and their main 
properties with a stress on transformation operators. The Dirac 8 and its 
derivatives, their divergent series representations, as well as a physicist's 
guide to operators and infinite matrix representatives, are given in the last 
two sections. These methods are then applied in Chapter 5 to heat diffusion in 
a ring, the vibrating string, and the infinite lattice. For each, we find its 
Green's functions, fundamental solutions, and normal modes. The last are 
particularly useful when describing, in Chapter 6, the vibrations of two- and 
higher-dimensional elastic membranes or cavities. Normal mode expansions 
for regions with circular boundaries give rise to Bessel and related series. 
The last section of this chapter gives a sketch of other series which appear in 
mathematical physics. The two chapters with applications, 5 and 6, are 
independent. The first serves to illustrate the uses of the Dirac 8 (Section 4.5) 
and the second those of eigenbasis expansions (Section 4.6). 

137 
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Chapter 4 

Chapter 5 

Chapter 6 
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4 

Function Vector Spaces 
and Fourier Series 

Vector spaces of functions can be infinite-dimensional. This implies a non
trivial extension of many of the concepts developed for finite-dimensional 
spaces. Section 4.1 is meant to provide a general picture of the location and 
depth of these extensions, introducing an infinite orthonormal set of functions 
(27T) -l/2 exp(inx ), for n = 0, ± 1, ± 2, ... , periodic in x with period 27T. A 
large class of functions can be expanded in a series, called Fourier series, 
involving this orthonormal set. In Section 4.2 we prove one version of the 
Dirichlet conditions which give a sufficiency definition for this set, while in 
Sections 4.3 and 4.4 we explore several properties of series expansions related 
to each other by translation, inversion, complex conjugation, and differentia
tion and examine their convergence rates and the Gibbs phenomenon. The 
next two sections, 4.5 and 4.6, enter into the field of generalized functions and 
their divergent series representation. Although the complete mathematical 
treatment of this subject is by no means elementary, we have followed a 
"middle path" in the spirit of a physicist's use of quantum mechanics. 
Section 4.7 collects some results to be used in Chapter 5 and establishes a link 
with Part III. 

4.1. Notions on Function Vector Spaces 

The defining properties of complex vector spaces were given in Section 
1.1. These comprise the operations of sum of vectors, multiplication by 
complex numbers, and the distributivity of one with respect to the other. The 
largest number of linearly independent vectors one can find in the space 

139 
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defines the dimension of that space. When this number is not bounded, the 
space is said to be infinite-dimensional. In this section we shall see that sets 
of functions over some interval constitute such spaces. While intuition based 
on ordinary finite-dimensional spaces is a reliable guide, the concepts must be 
sharpened. Here we shall present the main ideas but gloss over the con
siderable mathematical sophistication needed to fully justify them. 

4.1.1. The Vector Space Axioms 

Letf(x), g(x), ... E .?7~ denote functions whose domain f is an interval 
in the real line Pl and whose range is the field of complex numbers Cff (i.e., 
f: f--? Cff, f ~ Pl). Then af(x) + bg(x), where a, b E Cff is another such 
function, an element of .?7~. The defining properties of vector spaces (Section 
l.I) are satisfied, and .?7~ is thus a vector space whose elements, functions, are 
the vectors in the space. 

4.1.2. Linear Independence 

The statement of linear independence of a finite set of functions 
Un(x)}~ = 1 := {f1(x),fix), ... ,JN(x)},fk(x) E .?7~, can be phrased as 

N 

.2; CnfnCx) = 0 -¢> Cn = 0, n = I, 2, ... , N. (4.I) 
n=l 

[This is a direct translation of Eq. (1.1).] When the functions fn(x) of our 
chosen set are N - I times differentiable, linear independence can be tested 
in principle by constructing the system of equations formed by (4.1) and its 
N - 1 derivatives: 

N 

.2; cnf~Pl(x) = 0, p = 0, I, 2, ... , N - 1. (4.2) 
n=l 

If the Cn are zero, (4.2) is clearly satisfied. Now, for (4.2) to imply that all 
cn = 0, the determinant of the system (4.2) must be different from zero. 
This is the Wronskian of the set: 

p,n = I,2, ... ,N. (4.3) 

4.1.3. Spaces of Polynomials 

Consider as a first example the set of power functions in .?7~: 

n =I, 2, ... , N. (4.4) 

These are, of course, differentiable to any order as dPtn(x)fdxP = tn_v(x), 
t1(x) = I, tn(x) := 0 for n ~ 0. The Wronskian (4.3) will then be the deter-
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minant of a triangular matrix whose diagonal elements are dn- 1t11(x)fdx11 - 1 = 

1, and hence W({t11}, x) = 1 for any value of N. Now, linear combinations of 
the vectors (4.4), 

N N 

f(x) = L Cntn(x) = L C11X 11 - 1/(n- 1)!, (4.5) 
n=l n=l 

can easily be seen to constitute a vector space of dimension N with a basis 
( 4.4). In fact, they are the set of polynomials up to degree N- I. 

What happens when we let N grow without bound? The basis vectors 
will remain linearly independent, and the set (4.5) will become the space of 
all formal power series 

"' 
f(x) = L C11X 11 - 1/(n- 1)! (4.6) 

n=l 

characterized by the set of coefficients { C11};;" = 1> en E <??. There are several 
observations to be made here: (a) Ifthe series (4.6) converges for all x in the 
interval f, it represents the Taylor expansion of f(x). This is the case, in 
particular, when the set {c11};;"= 1 has a finite number of nonzero coefficients 
so that f(x) is actually a polynomial. (b) The series (4.6), when evaluated, 
may well diverge within f. The formal power series (4.6) can still be handled, 
however, in terms of the coordinates {c11};;"= 1 and subjected to the formal 
operations of sum and multiplication by a number. (c) We have no guarantee 
that the space of functions (4.6) is the set of all functions in fff. In fact, 
it is clearly not. 

4.1.4. Inner Product and Norm 

To have a better grasp of function vector spaces, it is convenient to intro
duce an inner product in .'?Ff. For f and g E fff representing the functionsf(x) 
and g(x), respectively, we define this (in analogy to Section 1.2) as 

(f, g) := Jf dxf(x)*g(x). (4.7) 

In the process of introducing such an inner product, we shall be losing those 
functions in fff whose integral is not defined. This inner product (4.7) is 
sesquilinear, i.e., linear in the second argument and antilinear in the first 
[Eqs. (1.4) and (1.5)]. From (4.7) we can also define a norm as 

(4.8) 

On the question of whether the inner product (4.7) is positive definite, note 

that we may have functions z(x) which are zero almost everywhere in f, 
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i.e., except on at most a denumerable number of isolated points, where they 
can take finite values. All such functions will have /lz/1 = 0 under (Lebesgue) 
integration. We shall consider all such functions to be equivalent to the null 
function (z = 0). We shall similarly speak off and any f + z being equivalent. 
In this context, the inner product ( 4. 7) is positive definite, as only for f = 0, 
i.e., equivalent to the null function, do we have //f/1 = 0. The space of the 
(Lebesgue) square-integrable functions plays a central role in much of 
mathematical physics and will be denoted by 2 2(/). 

One important property of vector spaces with positive inner products is 
that their elements satisfy the Schwartz inequality, which was seen in Section 
1.2 and which takes the same form as in Eq. (1.13): /(f, g)/ 2 ~ /lf/1·/lg/1. 
There, the proof did not require the dimension of the space to be finite. In 
this part we consider the case when f is a finite interval within~- By trans
lations and changes of scale in x we can always transform f onto the 
interval extending from -77 to 77. 

4.1.5. A Set of Orthonormal Oscillating Exponential Functions 

A set offunctions Un(x)} which satisfy (fn, fm) = 0 for n # m will be said 
to be orthogonal. Moreover, if /lfn/1 = 1, the set is orthonormal. The functions 

'Pn(x) := (277)- 112 exp(inx), n = 0, ±1, ±2, ... ,XE(-77,77], (4.9) 

can be seen to constitute such an orthonormal set since 

(cpn> cpm) = (277)- 1 r, dx[exp(inx)]* exp(imx) 

= (277)- 1 r, dx exp[i(m - n)x] 

_ {[277i(m -, n)]- 1 exp[i(m- n)x]J':, = 0, 

- (277)- 1 f_, dx = 1, 

n # m, 

(4.10) 
n = m. 

We shall henceforth denote by !!Z the set of all integers. A set of orthogonal 
functions is also linearly independent in a space with a positive inner 
product, since .Z:nE.2" Cncpn = 0 when placed in inner product with any 
one cpm leads to em( cpm, cpm) = 0, which implies Cm = 0 for m E !!Z. 

Exercise 4.1. Show that the set of power functions (4.4) does not form an 
orthonormal set under (4.7). The implementation of the Schmidt orthogonaliza
tion procedure leads to the basis of orthogonal Legendre polynomials Pn(77x). [See, 
for instance, the book by Dennery and Krzywicki (1967, Chapter III).] 
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4.1.6. The Space of Formal Fourier Series 

We construct now the space of all formal series involving (4.9): 

f(x) = 2 fn'Pn(x), fn E C(/. (4.11a) 
nE;z' 

Performing the inner product of the above equation with Cflm(x) and 
assuming that the sum and the integration in the inner product can be 
exchanged, we can use the linearity of the product and the orthonormality of 
the set { <!'n}nE2' in order to find the coordinates off in the q>-basis as 

fn = (q>m f). (4.11b) 

The inner product can then be written as 

( 4.12) 

Written out, Eqs. (4.11) read 

f(x) = (27T)- 112 2 fn exp(inx), (4.13a) 
nE;!l" 

fn = (27T)- 112 f_", dxf(x) exp(-inx). (4.13b) 

These are referred to, respectively, as the Fourier series and partial-wave 
decomposition or as the Fourier partial-wave synthesis and analysis. Equation 
( 4.12) is the generalized Parseval identity 

(f, g) = (" dxf(x)*g(x) = 2 fn*gn-
)_n nefr 

(4.14) 

This is a relation between the integral of the product of two functions and the 
sum of their partial-wave products. 

4.1.7. Further Comments 

Before pointing out the mathematical difficulties we have glossed over in 
deriving (4.13) and (4.14), let us interpret these formulas as they stand. 
Equations (4.13) tell us that an arbitrary function (in a class still to be deter
mined) on the interval from - 7T to 7T can be expanded in a series of exponen
tial functions quite similar to the Taylor expansion (4.6). This result might 
appear rather surprising, and indeed, historically, although Euler and 
Lagrange worked with series of the type (4.13a), they assumed thatf(x) had 
to be infinitely differentiable, since the summands of the series are. It was 
Fourier who in 1822 first dealt with series of the type ( 4.13a) to expand 
functions which were composed of an arbitrary (but finite) number of 
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segments of different continuous functions. Sufficiency conditions for the 
convergence of the series were found later by Dirichlet (Section 4.2). In con
trast with the Taylor series (4.6), where the coefficients en= dn-y(x)jdxn-llx=o 
depend on the local properties of the function, i.e., the value of f(x) and its 
derivatives at the single point x = 0, say, the Fourier partial-wave coefficients 
( 4.13b) depend on the global characteristics of the function throughout the 
integration interval and not at all on the value of the function at any single 
ordinary point. Fourier series have been used extensively for generations in 
problems connected with wave and diffusion phenomena, some of which will 
appear in subsequent chapters. 

Not until the 1930s, however, did physicists start making use of the formal 
Fourier series (4.13a) when convergence in the classical sense was not assured 
or expected. The work of Dirac (1935) in quantum mechanics, fundamental 
as it is, was not considered mathematically sound until it was fully justified 
by the distribution theory of L. Schwartz in the early 1950s. Although diver
gent series within integrals had been properly treated by Fejer and Cesaro, 
Dirac performed many of the dubious steps we have followed in deriving 
( 4.13), particularly the exchange of infinite summations and integrals [leading 
from ( 4.10) and ( 4.11a) to ( 4.11 b) and ( 4.12)], neither of which need exist. In 
presenting our results in the way we shall, we are not engaging in violence 
with existing mathematics but are rather exploiting the fact that the notation 
and "naive" concepts used in classical analysis can be considerably stretched 
to include deeper results in an operationally well-defined way. In the following 
sections we shall find several instances where, with the appropriate warning 
signs, such an approach leads to profitable shortcuts. 

Exercise 4.2. Explore the relation between the Taylor and Fourier series as 
follows. Let F(z) be a function of the complex variable z, analytic in a disk with 
center at the origin and radius a. The coefficients in the Taylor expansion 

"' 
F(z) = .2 Fnznfn! (4.15a) 

n=O 

can be written, using Cauchy's theorem [see Ahlfors (1953, Chapter 4)], as 

n! f Fn = p<nl(O) = 2-. dzF(z)z-n-1, 
7Tl c 

(4.15b) 

where the contour C encircles the origin in a counterclockwise direction inside 
the region of analyticity of F. (See Fig. 4.1.) Let z = pe1"', and consider the circular 
integration contour C with center at the origin and radius y < a, the contour line 
element being dz = iye1"' drp. Let fir/>):= (27r)- 112F(pe1"'). Equations (4.15) then 
become 

"' fir/>) = (27r)- 112 L Fnpn exp(im/>)/n! (4.16a) 
n=O 

(4.16b) 



www.manaraa.com

Sec. 4.2) Chap. 4 • Function Vector Spaces/Fourier Series 145 

Fig. 4.1. Integration contour for Eq. (4.15b). 

For p = y andfn := ynFn/n! these are the Fourier series formulas (n :;;?; 0). The deli
cate point in this analysis (which is not an exercise) is the consideration of all 
functions for which this is valid, i.e., the limit y __,.a. Note that (4.16a) involves 
only summation over nonnegative partial waves. These functions lie in Hardy 
spaces [see Dym and McKean (1972, Section 38.8)]. To obtain the full Fourier 
series, one has to consider Laurent expansions of functions analytic in an annulus. 

4.2. The Dirichlet Conditions 

The construction of the Fourier partial-wave analysis and synthesis as 
the "limit" of a succession of vector spaces of growing dimension (Sections 
3.4 and 4.1), for all its suggestiveness, did not provide us with an unambiguous 
characterization of the class of functions which can be expanded in the set of 
functions {<pn(x)}ne!'l' in Eq. (4.9). As a minimal condition, we saw that this 
could be done for functions l(x) which are trigonometric polynomials, as 
then they are a finite sum of <iln(x)'s and the orthogonality of the <p's alone 
guarantees the validity ofthe pair of equations (4.13)-(4.14). 

4.2.1. Statement of the Theorem 

A classic theorem by Dirichlet states that if a function l(x) is periodic 
with period 277 and is piecewise differentiable, the succession of truncated 
sums 

where 

l~<(x) := (277)- 112 2 In exp(inx), 
lnl.;i< 

k = 1, 2, ... , 

In== (277)- 112 r, dxl(x) exp( -inx), 

(4.17a) 

(4.17b) 
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f(x) 

-71: 0 

Fig. 4.2. A piecewise differentiable function has bounded derivatives everywhere, except 
at most at a finite number of points, where it may have bounded discontinuities. 
Even at these points, however, the limits of the derivatives are defined and 
bounded as we approach the discontinuity points from the right or from the 
left. 

converges to f(x) at all points of continuity of the function. At the points of 
discontinuity, if any, the succession converges to the midpoint, i.e., 

lim fk(x) = 1-[f(x+) + f(x-)] := lim ·Hf(x +e)+ f(x- e)]. (4.17c) 
k-Ho e-o 

(e>O) 

Moreover, in any subinterval where f(x) is free of discontinuities, the con
vergence of the sequence fk(x) to f(x) is uniform, that is, the bound on 
ifk(x) - f(x)i is independent of x. 

We remind the reader that a piecewise differentiable function is one 
which has a bounded left and right derivative everywhere except at most at a 
finite number of isolated points. Specifically,f'(x±) :== lim.~o df(y )fdy iY = x ±e• 

e > 0, must have a finite value for every x, although in casef(x) orf'(x) has a 
discontinuity at x 0 , f'(x0 +) and f'(x0 -) may be different. See Fig. 4.2. The 
discontinuity must thus be bounded, and therefore f(x) itself is bounded. 
Since the interval is finite, the function is absolutely integrable. 

We shall call the space of functions which satisfy the Dirichlet conditions 
"f'"D. Note that any finite linear combination of functions in "f'"D is a function 
in "f'"D. 

4.2.2. Alternative Versions 

The Dirichlet conditions, as stated above, are sufficient conditions for 
the pointwise uniform convergence (for every x in the interval) of the Fourier 
series. They are not necessary, however, and several weaker (and harder to 
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prove) sets of conditions lead to similar results. A second commonly stated 
set of conditions is the following: Letf(x) be a periodic function of period 2TT 
which (a) is piecewise continuous, i.e., continuous at all but a finite set of 
points; (b) has a finite number of bounded discontinuities; (c) has a finite 
number of maxima and minima; and (d) is absolutely integrable. Then the 
succession of truncated sums (4.17a) converges as described above. The 
convergence is uniform for subintervals free of discontinuities of f(x). 
Conditions (b) and (c) are asking for bounded total variation. Further weaken
ing of the conditions can be achieved if these are required to hold only inside 
a subinterval of [-TT, TT]. [See, for example, Bary (1964, Chapter 1) and Dym 
and McKean (1972, Sections 1.4 and 1.5).] 

4.2.3. Proof 

Due to the transparency of the proof, we shall tackle the first version of 
the theorem. First substitute ( 4.17b) into (4.17a). As the sum is finite, it can 
be interchanged with integration, yielding 

fk(x) = (2TT)- 1 J" dyf(y) :L exp[in(x- y)] =: J" dyf(y)Dk(x- y), 
-" lnJ<;k -" 

(4.18) 

where the Dirichlet kernel Dk(x - y) can be calculated using the geometric 
progression formula (1.50) for x = exp[i(x- y)], a= -k, b = 2k: 

Dk(z) = (2TT)- 1 :L exp(inz) 
Jnj<;k 

= (2TT)- 1 [1 - exp(iz)]- 1 exp( -ikz){l - exp[i(2k + l)z]} 

= (2TT)- 1 sin[(k + -!-)z]/sin(z/2). 

We note that the Dirichlet kernel is a real even function and that 

Dk(O) = (27r)- 1(2k + 1), r, dyDk(x- y) = 1. 

(4.19) 

(4.20a) 

(4.20b) 

The last relation is due to (4.10), as all but the n = 0 summand in (4.19) 
integrate to zero. The Dirichlet kernel (Fig. 4.3) oscillates strongly through
out the interval; at the midpoint it has its maximum at a peak which is 
roughly double the width of that of other oscillations. When integrated as in 
( 4.18), in company with a differentiable or continuous function, this peak 
for large k is expected essentially to "punch out" the value of the function 
at y = x, the rapid oscillations beside the main peak giving a vanishing 
contribution due to the Riemann-Lebesgue lemma [see Apostol (1975, 
Section 15-6)]. 
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Fig. 4.3. Dirichlet kernel functions Dk(x) for increasing values of k (left). These functions 
have constant partial-wave coefficients (21r) - 112 for JmJ ,;;; k (right). For 
increasing k, the central peak grows without bound. 
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Consider now the difference between the kth truncated sum fk(x) and 
·Hf(x+) + f(x-)], where f(x±) := lim,_ 0 j(x ± e), e > 0. This allows us to 
work with points where the function is continuous, the last expression then 
being simply f(x), or points where it is discontinuous but differentiable for 
points arbitrarily close at either side of the discontinuity. Using ( 4.18), 
( 4.20b ), the evenness of Dk(x - y ), and the periodicity of the functions 
involved, we write 

fk(x)- Mf(x+) + f(x-)] = f dy[f(x + y)- f(x+)]Dk(y) 

The integrals have the form 

f dyg ± (x, y) sin[(k + !)y ], 

+ f dy[f(x - y) - f(x-)]Diy). (4.21) 

g ±(x, y) = t[f(x ± y) - /(x±)]fsin(y/2), 

(4.22) 

and they exist because the kernel and, by assumption, f(x) are absolutely 
integrable. The only point which might seem troublesome is y = 0, but 
clearly g ±(x, O±) = f'(x±), which is bounded. 

We can now integrate (4.22) by parts: 

(k + !)-l{g±(x,y)cos[(k + !)y][~=O-r dy 0g±~;,y)COS[(k + -!)y]}. 

(4.23) 

As the difference (4.21) is proportional to (k + !)- 1 times a bounded function 
of x (see Exercise 4.3), when k -> oo this difference tends toward zero, and 
the succession of truncated sums fix) approaches ![/(x+) + f(x-)]. In 
particular, when x is a point where f(x) is continuous, the bound of the 
function in (4.23) provides a bound on the difference (4.21) which is indepen
dent of x. The convergence of the succession of truncated sums will thus be 
uniform for the intervals of continuity of the function. 

Exercise 4.3. Prove that ag±(x, y)f8y is a bounded function in the interval 
[0, 7T ]. In particular, at the problematic point y = 0 this function is zero. 

Exercise 4.4. Verify that the Parseval identity, Eq. (4.14), is a direct conse
quence of the validity of ( 4.17). 

To provide working examples of Fourier series expansions which will be 
used later on, we shall consider some specific cases which satisfy the Dirichlet 
conditions. 
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4.2.4. Example: The Rectangle Function 

The rectangle function of width e and height 7J centered at the origin is 

R e,n X :== . ( )( ) {
7], - e/2 < X < e/2 < 7T, 
0, otherwise. 

(4.24) 

See Fig. 4.4. The rectangle function is assumed to be periodic as are all 
functions in nyn, so we require e < 27T. The partial-wave coefficients can be 
found by direct substitution in ( 4.17b): 

(4.25a) 

(4.25b) 
Note that for n = 0 Eq. (4.25b) yields formally (4.25a). 

Partial-wave synthesis for the truncated sums ( 4.17a) defines the functions 

Rr:·n>(x) = (27T) -l/2 R~e,nl + (27T) -l/2 ) R<;·n) exp(inx) 
0 ,:/nj <;k 

= 7J(27T)- 1 (e + 4 .2; n- 1 sin-}necosnx) 
O;<Jnl<;k 

= 7](27T)- 1{e + 2 n~l n- 1 sin[n(x + e/2)] 

- 2 n~l n- 1 sin[n(x- e/2)]} (4.26a) 

These truncated sums have been plotted for a few values of k in Fig. 4.5. 
In this figure it appears that the truncated sums indeed converge to the 
original function. The oscillations near the edges of the discontinuity do not 
decrease in amplitude, however, as the number of terms increases. This is the 
Gibbs phenomenon, which we shall discuss further in Section 4.4. The result 
we have proved in this section tells us that, as the rectangle function (4.24) 
satisfies the Dirichlet conditions, 

lim Rr:·n>(x) = ' {
R<e,nl(x) X =f. ± ej2, 

k- oo 7)/2, X = ± ej2. 
(4.26b) 

1]! 

-7f 0 

-E./2 E/2 
Fig. 4.4. The rectangle function. 
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Fig. 4.5. Succession of truncated Fourier sums approximating the rectangle function 
(left) with k summands. The Fourier coefficients (right) are zero for lml > k. 

Exercise 4.5. Prove the trigonometric series identity 

~ -1 . 8 {(" - 8)/2, 0 < 8 < 27T, 
L. n smn = 

n=l 0, 8 = 0, 27T 
(4.27) 

using Fourier series. Note that to prove this identity without this technique is 
quite difficult. [See, for instance, the book by Bromwich (1926, p. 188).] 
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4.2.5. Example: The Triangle Function 

Consider now the triangle function of height h: 

T"(x) = {h(x + n)/n, -n < x :::;; 0, 
h(n - x)fn, 0 :::;; X :::;; n. 

[Sec. 4.2 

(4.28) 

See Fig. 4.6. Again, the Fourier partial-wave coefficients can be found 
without further ado as 

Tn" = (2n)- 1' 2 [n- 1 {, dxh(x + n)exp(-inx) 

+ n- 1 i" dxh(n- x)exp(-inx)] 

{
nh(2n)- 112, n = 0, 

= 4h(2n) - 112fnn 2 , n odd, 

0, otherwise. 

(4.29) 

The Fourier synthesis is then given by the limit of the truncated sums 

Tk"(x) = h(t + 4n- 2 L; n- 2 cosnx), 
lnlodd,.;k 

lim Tk"(x) = T"(x). 
k-+"" 

(4.30a) 

(4.30b) 

The convergence of (4.30) ask~ oo to the triangle function is guaranteed by 
the easily verifiable fact that T"(x) satisfies the Dirichlet conditions. Moreover, 
it converges faster than the truncated sum succession of the rectangle function 
(4.26). While an upper bound of the partial-wave coefficients of the latter is 
~ lni-I, those of (4.30) decrease as ~ lnl- 2 • Thus it suffices to keep only a 
few terms to reproduce the original function down to the limit of visual 
acuity in Fig. 4. 7. The question of convergence rate will be explored in 
Section 4.4. The two functions we have introduced here as examples and others 
which will appear later on have been collected in Table 4.4. 

Exercise 4.6. Prove that l(x) is a positive function if and only if its Fourier 
coefficients In are a positive-definite set, i.e., 

l(x) > 0 = L ln-n'g:gn' > 0 (4.3la) 
n.n'ef!l' 

for an arbitrary set of coefficients {gn}ne:z'· You can show first that the second 
member of(4.31a) equals (27T)- 112 f~, dxl(x)Jg(x)J 2 • Refer to Eq. (1.56). Similarly, 
for all g(x) E 2'2( -7T, 7T), 

In > 0 ...... f, dx f, dx'l(x - x')g(x)*g(x') > 0. (4.31b) 
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Fig. 4.6. The triangle function. 
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Fig. 4.7. Succession of truncated sums approximating the triangle function (left) and 
Fourier coefficients (right). The latter are zero for lml > k. 
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4.3. Alternative Representations, Transformations, and Symmetries 

The Fourier series 

l(x) = (2Tr)- 112 2 In exp(inx), X E ( -Tr, 7r), (4.32a) 
nE2' 

In= (2Tr)- 112 f, dxl(x) exp( -inx), (4.32b) 

expands the functionl(x) E "f/'D in terms of imaginary exponential functions. 
When the function is real or has certain symmetry properties, it may be 
more convenient to use the trigonometric functions, sine and cosine, for the 
same purpose. The rectangle and triangle functions which served as examples 
in Section 4.2 have been given alternative series representations in terms of 
the trigonometric functions [Eqs. (4.26a) and (4.30a)). At a glance, these tell 
us (among other things) that the series are even functions in x. 

4.3.1. The Sine and Cosine Fourier Series 

Using Euler's formula, we can rewrite (4.32) as 
00 

l(x) = (27r)- 112lo + + Tr- 112 2 Un +cos nx +In- sin nx) (4.33a) 
n=1 

with 

lo + := lo = (27r)- 112 r, dxl(x), (4.33b) 

In+ :=2- 112(/n +I-n)= Tr- 112 f_", dxl(x)cosnx, n = 1,2, ... , (4.33c) 

In- := 2- 112i(ln - 1-n) = Tr- 112 f, dxl(x) sin nx, n = 1, 2,.... (4.33d) 

This is sometimes called the Fourier sine and cosine series. 

4.3.2. Moduli and Phase Shifts 

A further alternative representation can be set up from (4.33) as 
00 

l(x) = (2Tr)- 112F 0 + Tr- 112 2 Fn cos(nx + <fon), (4.34a) 
n=1 

Fo := lo +, Fn COS <fon :==In+, Fn sin <Pn :== -In-' n = 1, 2, ... , 

(4.34b) 

which expresses l(x) in a cosine series with phase shifts. Note that if In+ and 
In- are complex, so are Fn and <fon· 
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Exercise 4.7. Find the analogue of (4.34) in terms of sine functions with 
phase shifts. Relate these to (4.33) and (4.34b). 

4.3.3. Linear Operators 

Part of the task of finding the Fourier partial-wave coefficients of a 
function is obviated if we know how to build, from known ones, new Fourier 
series for related functions. The first and most obvious correspondence is the 
one obtained under linear combination of functions. Letf(x) and g(x) be two 
functions satisfying the Dirichlet conditions, with partial-wave coefficients 
Un}ne.2" and {gn}neff· Then clearly the linear combination function h(x) = 
af(x) + bg(x), a, b E 11, will also satisfy the Dirichlet conditions and will 
have Fourier coefficients hn = afn + bgn, n E fZ. The proof of this result uses 
elementary results on the differentiability and integrability of linear combina
tions of functions. 

Exercise 4.8. Show that the coefficients of the Fourier sine and cosine series 
( 4. 33) of the above sum of two functions are hn ± = afn ± + bgn ±. 

We shall now introduce linear operators A as mappings in the space of 
functions "f/0 which satisfy the Dirichlet conditions. This follows closely the 
finite-dimensional concepts introduced in Section 1.3, except that we have no 
a priori guarantee that any given operator will be a one-to-one mapping of 
Y 0 on "f/0 . In this section we shall consider only operators which do map this 
space into itself, i.e., iff E "f/0 , then Af E Y 0 . Moreover, these mappings are 
to be linear, i.e., 

A(af + bg) = a(Af) + b(Ag) 

for f, g E Y 0 and a, b E 11. 

4.3.4. The Translation Operator 

( 4.35) 

Let u a stand for the linear operator which translates the reference 
coordinates of the real line to the left by a, i.e., 

(u af)(x) = f(x + a), a = a mod 217, x = x mod 217. ( 4.36a) 

It is clear that u af satisfies the Dirichlet conditions iff does. If the Fourier 
coefficients of the latter are Un}nEff, then those of U af will be 

(uaf)n = (217)- 112 r, dx(uaf)(x)exp(-inx) 

= (217)- 112 r, dxf(x +a) exp( -inx) 

= (217)- 112 r, dxj(x')exp[-in(x'- a)]= exp(ina)fn- (4.36b) 

Note that in Y 0 , u 2 , is equivalent to the identity operator. 
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In terms of the alternative representations (4.33) and (4.34) the trans
formations of the coefficients (4.36b) take the forms 

(lfaf)n + = 2- 112[(lraf)n + (lraf)-n] 

= 2- 112 [ exp(ina )fn + exp(- ina )f- nl 
= 2- 112 [cosna(fn +f-n) + isinna(fn -f-n)] 

= cos(na)fn + + sin(na)fn-, n = I, 2, .... (4.37a) 
Similarly, 

(lr af)n- = -sin nafn + + cos nafn-' n = I, 2, ... , (4.37b) 
while 

(4.37c) 

which is formally contained in (4.37a) for n = 0. These relations can be also 
obtained as in (4.36b) using (4.33b)-(4.33d). In Table 4.1 we summarize the 
results of this section. 

Exercise 4.9. Show that if g = lr af with shifted Fourier cosine coefficients 
Gn, Yn and Fn, </>n, respectively, then 

Gn = Fn, 

Yn = </>n + na, 

n = 0,1,2, ... , 

n = 1, 2, ... , 

(4.38a) 

(4.38b) 

which simply tells us that under translations only the phase shifts are changed, 
while the amplitudes of the constituent waves remain the same. 

Exercise 4.10. Build a square wave of height T) with P pulses (Fig. 4.8) from 
the rectangle function ( 4.24) as 

p 

s<P.nl(x) = - T) + 2 R<n!P,2nl(x - xl), x 1 = (21 + 1)7Tj2P. ( 4.39a) 
l=l 

Since we know the Fourier coefficients of the undisplaced rectangle function 
(4.25), using (4.36), linear combination, and Eq. (1.50), show that the Fourier 
coefficients of (4.39a) are 

<P l {4i7]P(27T) -l/2/n, 
Sn '" = 0, 

TJ-: :: 
: : . . 
: : . . . . 
: : . . 

:: : : 
: : 
: : 
! : . . 

-n 0: 

n = (2k + 1)P, k E ~, 

otherwise, 

;--: 
: : . . . . 
: : 
: : 
: : . . 

in 
~ . . 

'---------' 
. . 
'---------' ......_______: ~ 

Fig. 4.8. Square wave with five pulses. 

(4.39b) 
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or 

n = (2k + l)P, k E !t', 

otherwise, 
(4.39c) 

(4.39d) 

Exercise 4.11. Let if k stand for an operator which translates the Fourier 
coefficient labels k units to the left: 

ctkf)n = fn+k· (4.40a) 

Show that the action on the corresponding functions is 

(if kf)(x) = exp(- ikx)f(x). (4.40b) 

4.3.5. The Inversion Operator 

Now let 00 be the operator which inverts the coordinate axis through the 

origin: 

COof)(x) = f(- x). (4.41a) 

Then, by reasoning parallel to (4.36b), we obtain the relation between the 

Fourier coefficients off and 00f as 

(4.4lb) 

i.e., fn as a function of n E f!Z also suffers reflection through the origin. 

Exercise 4.12. Show that the coeff!cients in the sine and cosine Fourier 
series transform under inversions in the way given by the corresponding entries 
in Table 4.1. Do the same for the amplitude and phase-shift coefficients. 

Exercise 4.13. Verify that the Fourier coefficients of the square wave in 
Fig. 4.8 [Eqs. (4.39b)-(4.39d)] imply the oddness of the function as Sn = - S -n· 
The rectangle and triangle functions of Section 4.2 are even. Verify this property 
by means of their Fourier coefficients. 

Exercise 4.14. In the spirit of Section 3.4, where Fourier series were seen as 
the infinite-dimensional limit of the finite Fourier transforms, show that u a and 
D0 are the corresponding "limits" of the rotation and reflection operators IRk and 
Do for finite-dimensional spaces in Section 1.5. The operators introduced here also 
form a group, as 

lralrb = lra+b• lro = ~ = lr2,, u;;-1 = u -a, 

Do2 = 1, Da := UaDolr -a, DaDb = U2(b-a), 

(4.42a) 

(4.42b) 

which is the infinite-dimensional version of the dihedral group. As these consist 
of reflections and rotations by any angle in a two-dimensional plane and conserve 
angles between vectors, the group they constitute is called the two-dimensional 
orthogonal group 02. 
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Exercise 4.15. Show that lr a and Da map 'f/D into itself and moreover that 

(g, lr af) = (lr- ag, f), 

(g, Daf) = (Dag, f) 

on any pair of square-integrable functions f, g. 

(4.43a) 

(4.43b) 

Exercise 4.16. Define the dilatation operator [Ilk for k an integer that has 
the following effect on periodic functions f(x) of period 27T: 

([Dkf)(x) = f(kx), (4.44a) 

i.e., they are transformed into functions of period 27Tjk (which are also of period 
27T), repeating k times the form off in ( -7T, 7T]. Show that the Fourier coefficients 
of [Dkf are related to those off as 

( f) = {fm if n = km, m E :?Z, 
[ilk n 0 h . ot erw1se. 

(4.44b) 

In particular, we have [11 1 = 1 and [)1_ 1 = D0 • Show that this works with the 
square wave with P pulses (Fig. 4.8) in Exercise 4.10. Note that the group axioms 
of Section 1.4 we can satisfy are (a) [llk[il1 = [Ilk~, (b) associativity, and (c) existence 
of an identity [11 1 = 1. Axiom (d), the existence of an inverse for every [Ilk, is not 
satisfied. Such an operator would take us out of the space of periodic functions of 
period 27T and hence does not exist in the space. A group minus axiom (d) con
stitutes a structure called a semigroup with identity. 

4.3.6. Complex Conjugation 

Now consider the function f*(x) which is the complex conjugate of a 
given f(x) E "f/D. The Fourier partial-wave coefficients of the former can be 
related to those of the latter by 

(f*)n = (27T)- 112 L f*(x) exp(inx) 
ne;z' 

= [C27T)- 112 L f(x) exp( -inx)] * = U-n)*. 
ne;z' 

(4.45) 

Exercise 4.17. Show that the coefficients in the alternative representations of 
the Fourier series of the complex conjugate of a given function are those in the 
corresponding entries in Table 4.1. 

4.3.7. Eigenfunctions and Eigenvalues 

When a functionf(x) is mapped into a multiple of itself under the action 
of a given operator A, i.e., when 

(Af)(x) = Aj(x), (4.46) 

we shall say that f(x) is an eigenfunction of A with eigenvalue >.. Equation 
(4.46) describes those directions in the function vector space which are 
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preserved under the action of A. In the context of transformations, an f(x) 

satisfying (4.46) is also said to exhibit definite symmetry under the action of 

A. The functions which satisfy ( 4.46) with A = 1 are said to be invariant 

under that transformation. 
Let us investigate the eigenvalues and functions of the operators intro

duced in this section from the point of view of the possible symmetries they 

can exhibit. 

4.3.8. Definite Symmetry under Inversion 

Consider first the inversion operator 00 in (4.41a). As 00 2 = ~, (0 0 2f)(x) = 
A(0 0f)(x) = A2j(x) = f(x); hence the eigenvalues of 00 in "Y0 can only be 
A = 1 or A = -1. Functions which are even [f(x) = f( -x)] will be eigen

functions of 00 with eigenvalue A = 1, while odd functions [f(x) = - f(- x)] 
will correspond to the eigenvalue A = - 1. Definite symmetry under inversions 
is called parity, so eigenfunctions of the inversion operator are those of even 

or odd parity. Any function can be decomposed uniquely into a sum of an 

even- and an odd-parity function; however, superpositions have no definite 

parity. The inversion operator thus divides the space of functions into two 

subspaces, each of definite parity, whose union is the full space and whose 
intersection is only the null function. Now, Eq. (4.41b) gives us the same 

information but in terms of the Fourier coefficients: even (respectively odd) 
functions will have partial-wave coefficients which are even: fn = f_ n 

(respectively odd:fn = -f-n). Table 4.2 shows the implied relations for the 
alternative representations. From (4.33c)-(4.33d) we can see quite simply that 
for even (respectively odd) functions, fn- = 0 (respectively fn + = 0), while 

(4.34b) shows that all <Pn = 0 (respectively <Pn = Tr/2). 

4.3.9. Definite Symmetry under Translations 

Regarding functions with definite symmetry under translations, Eqs. 

(4.36), we first note that any function consisting of a single partial wave 

rp1(x) = (27r) - 112 exp(i/x) [Eq. ( 4.9)], i.e., with Fourier coefficients ~ on.z, will 
be an eigenfunction of all translation operators lr a• with eigenvalue exp(i!a). 
Indeed, they are the only functions to have this property and could have been 
constructed asking for it to hold. Let us consider now a fixed operator lr a 

and look for all partial waves which correspond to the same eigenvalue A0 • 

Since any function in "f/0 consisting only of such partial waves will be an 
eigenfunction of lr a with eigenvalue A0 , we shall generate eigenspaces of lr a 

labeled by Ao whose properties will be then explored. Let the translation be by 
a = 2Trjk, where k is a positive integer. The eigenvalue of cpz(x) will then be 

exp(2Trilfk), which is the same for all n = l mod k (that is, for n = I + km, 
m an integer). If I is chosen in the range 0, 1, ... , k - 1, we can divide "Y0 
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into k eigenspaces 1'?, any element of which has eigenvalue exp(2TTil/k) 
under lf a· In particular, "f'"oD is the space of all k-fold periodic functions in 
( -TT, TT], i.e., with period 2TT/k, and consists only of linear combinations of 
cpn(x) with nan integer multiple of k. Only these partial-wave coefficients can 
be nonzero. (See Exercises 4.10 and 4.16 fork = P, where indeed we found 
that Sn = 0 when n is not a multiple of P.) For other values of I translation 
by 2TT/k will produce a function identical with the original one but for a phase 
factor exp(2TTil/k). In particular, if k is even, the space 1''f12 will consist of all 
functions which change sign under such a translation. 

Exercise 4.18. Consider Fig. 4.8. The square wave changes sign under 
translation by TT/P. By the above argument show that fork = 2P the only partial
wave coefficients which can be nonzero are Sn for n = (2m + I)P, mE~. i.e., 
the odd multiples of P. In this way we are predicting all the zeros which appear on 
the Fourier partial wave expansion of the square wave. 

Exercise 4.19. Show that the only periodic function with definite symmetry 
under dilatations is the constant function. 

4.3.10. Real and Imaginary Functions 

Last, we turn to complex conjugation. As the application of this opera
tion twice is equivalent to the identity, we can have only f*(x) = f(x) when 
the function is real or f*(x) = - f(x) when it is pure imaginary. The simplest 
description of these two subspaces of functions is in terms of the coefficients 
of the sine and cosine Fourier series, which are constrained to be purely real 
or imaginary, respectively. See Table 4.2. 

Exercise 4.20. Verify that the Fourier partial-wave coefficients in all repre
sentations for the rectangle, triangle, and square-wave function indeed have the 
property of Table 4.2 corresponding to real functions: For the case of the square 
wave in Fig. 4.8, we can see that the function is real; hence Sn = (S-n)*. It aiso 
has odd parity, which means that Sn = - S -n· The conclusion therefore is that all 
Fourier coefficients must be pure imaginary, while the zeros are inferred from the 
multiple-periodicity argument. We note, moreover, that the overall convergence 
behavior of the Fourier series can be characterized by Sn ~ lnl- 1 . This feature 
and its generalization will be studied in Section 4.4. 

The results in this section allow us to use the symmetry properties of a 
function under inversion, translation, and complex conjugation in order to 
predict corresponding properties of the Fourier partial-wave coefficients, in 
particular, to know which are equal to each other and which are zero. This 
usually results in a drastic simplification of the problem at hand and is widely 
used, for instance, in quantum mechanics in order to reduce the-generalized
partial-wave decomposition of the allowed states of a system where the 
symmetry properties are inferred from physical considerations. 
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Table 4.2 Functions with Definite Symmetry under a Transformation and the 
Corresponding Restrictions on Their Fourier Partial-Wave Coefficients 

Transformation 

Translation 
by 217/k 
(k integer) 

Inversion 

Complex 
conjugation 

Function 
property 

k-fold 
periodic in 
(-77,77] 

Changes 
phase by 
exp(27Ti//k) 

Even 
Odd 

Real 
Pure 

imaginary 

Restrictions on the Fourier 
partial-wave coefficients 

In = 0 for n "¢ 0 mod k (n not multiple of k) 

In = 0 for n "¢ I mod k 
(similarly for alternative representations) 

In= I-n 
In= -1-n 

In= lf-n)* 
In = -(1-n)* 

In-= 0 
In+= 0 

In± real 
In± imag. 

Fn, </>n real 
Fnimag., 

</>n real 

4.4. Differential Properties and Convergence 

In this section we shall explore the relations between Fourier series and 
differentiation. This will lead to a better understanding of the rapidity of 
convergence of these series, the Gibbs phenomenon, and some of the 
"smoothing" techniques used to circumvent it. Finally, we shall mention 
the meanings of "best approximation" and the Bessel inequality. 

4.4.1. Fourier Series, Integration, and Convergence 

Consider a function f(x) which satisfies the Dirichlet conditions and its 
integral 

p-1>(x) := {'' dyf(y). (4.47) 

It is easy to see thatj< -l>(x) will also satisfy the Dirichlet continuity conditions 
since the integral of a differentiable (or continuous) function with at most 
bounded discontinuities is differentiable at all but a finite number of points. 
So thatj<- 1>(x) will be periodic with period 27T, we must requ_ire that a shift 
in the integration limits by 27T, each independently, leave the value unchanged. 
This means that 

i x+2" 

x dyf(y) = (277)112Jo = 0, 
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i.e.,/0 = 0. If this is satisfied, we can consider the Fourier coefficients ofj(x) 
andJ<- 1l(x), Un}ne~ and u~- 1l}ne~· writing 

(271')- 112 L /A- 1) exp(inx) = p-1l(x) = (271')- 112 r dy L fn exp(iny) 
ne~ Jc ne~ 

= (271')- 112 L fn fx dy exp(iny) 
ne~ c 

= (271')- 112 L fn(in)- 1 exp(inx) 
ne~ 

- (271')- 112 L fn(in)- 1 exp(inc). (4.48) 
ne~ 

We have been able to exchange integration and infinite summation, as they 
both exist and converge uniformly. The last sum in (4.48) is the arbitrary 
integration constant/a - 1l. The equality of the coefficients of the (independent) 
partial waves yields 

(4.49) 

In relating the Fourier coefficients of f(x) with those of its antiderivative 
p- 1l(x) we see that the latter give rise to a more rapidly converging Fourier 
series than the former. In fact, uniform convergence of the former guarantees 
that of the latter. 

4.4.2. Differentiation 

Turning the tables, suppose now that we know the Fourier coefficients 
of a piecewise differentiable functionf(x) satisfying the Dirichlet conditions. 
The Fourier coefficients of its derivative f'(x), {f~}ne~. which we must assume 
also satisfies Dirichlet, can be found from (4.49), replacingj<- 1l by fandf 
by f', as 

f~ = infn, n E fZ. (4.50) 

We can perform differentiation repeatedly and-Dirichlet allowing-express 
the Fourier coefficients of the pth derivative of f(x),j<Pl(x), as 

n E fZ. (4.51) 

The Fourier series with coefficients (4.51) will converge to the pth derivative 
of f(x). In fact this allows us to define fractional derivatives for complex p. 
In Fig. 4.9 we have plotted the fractional derivatives of the triangle function, 
minus a constant so that its integral will be a periodic function, for real p 
between -1 and 1.75. In Table 4.3 we have collected some of the useful facts 
found in this section. An extensive table of Fourier coefficients and trigono
metric series has been compiled by Oberhettinger (l973a). 
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1. 

-7f 
l \ 

l 7f \ 

~75 Q 
C7 \ 

Fig. 4.9. Fractional derivatives of order n of the triangle function. The latter has been 
slightly smoothed so as to avoid the appearance of the Gibbs phenomenon for 
positive derivatives in the finite computed series; still, spurious oscillations 
appear in the highest derivatives. 

Exercise 4.21. Assume f(x) is a trigonometric polynomial. Verify the 
validity of (4.51). 

4.4.3. A Theorem on the Convergence of Fourier Series 

One feature which is apparent in the relation (4.51) is that the rapidity of 
convergence of the infinite Fourier series of pvl(x) gets worse with each 
successive derivative. It is to be expected that we may reach a p where the 
Fourier series diverges. In fact, we shall prove the following statement: 
If the pth derivative of a function f(x) is a square-integrable, its Fourier coeffi
cients must decrease as Ifni ~ cinl-v for c = lif<Pljj 112 • 

4.4.4. Proof 

The proof proceeds by use of the Schwartz inequality [Eq. (1.13)], 
noting that, since 

(4.52) 
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[see Eqs. (4.7), (4.9), and (4.17b)], we have 

Ifni = lni-PI(cpn, f<Pl)l :::;; lnl-pllcpnll 112 llf<Plll 112· (4.53) 

Now, the functions cp,.(x) have unit norm, and l!f<P>I! exists by assumption. 
One can immediately draw an important corollary to this result: if a 

functionf(x) is infinitely differentiable (and thus integrable, as the interval is 
finite), then its Fourier coefficients/,. must decrease with increasing n faster 
than any power of In!. Clearly, this result is satisfied when fn = 0 for In! 
larger than some fixed M, since thenf(x) is only a trigonometric polynomial. 
It also holds for more general cases, an example being the Jacobi theta 
function, which will be discussed below. 

4.4.5. An Example 

We can verify the workings of these results graphically. Consider the 
triangle function, Eq. (4.28), whose Fourier coefficients are 

n = 0, 

n odd, 

otherwise. 

(4.54) 

In Fig. 4.10(a) we show a few truncated sums and note that for the sixteenth 
one the original function is already "well" reproduced. The derivative of the 
triangle function of height h is a function with value hf7T in ( -TT, 0) and - hjTT . 
in (0, TT). This is a square wave [Eqs. (4.39)] with one pulse (P = I) of height 
7J = h/7T, whose Fourier coefficients are 

(1 hi l {4i(27T) - 112hjTTn, n odd} . h 
Sn · " = = mTn. 

0, n even 
(4.55) 

The Fourier series with coefficients (4.55) converges slower than (4.54), with 
the speed of the alternating harmonic series. In Fig. 4.10(b) we have plotted 
the derivatives of the truncated sums of Fig. 4.10(a). Finally, in Fig. 4.10(c) 
we have drawn the derivatives of Fig. 4.10(b). This corresponds formally to 
a Fourier series with coefficients 

S~l.h/nl' = inS~l.h!nl = {-4(27r)-li2h7T-\ n odd, 
0, n even. 

(4.56) 

The set of coefficients (4.56) cannot give rise to a convergent Fourier series 
as the terms have the same absolute value for all n. Figure 4.IO(c) and the 
divergent series represented by (4.56), however, are not without meaning, as 
we shall see in Section 4.5. The point here is to note how the result on con
vergence applies here. The first derivative of the triangle function is the one
pulse square wave, which is square-integrable; hence the Fourier coefficients 
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a b 

~. 
-n 7f 

Fig. 4.10. Relation between differentiability and convergence. (a) The triangle function 
and its first few truncated Fourier sums; (b) and (c) are their first and second 
derivatives. 

of the former, Eq. (4.54), must decrease faster or at least as In!-\ and so 
they do. 

4.4.6. Contra positive of the Theorem 

The contrapositive of the result on differentiability and convergence 
[(A =>B)-= (not B =>not A)] states that if the Fourier coefficients of a func
tion f(x) decrease more slowly than In!-P (i.e., Ifni ;::: clnl- P), then j<Pl(x) is 
not square-integrable (i.e., fff<PJII does not exist). 

Applied to the example at hand, ITnf > clnl_ 2 _' for any positive e, 
and hence T< 2 +<l(x) is not square-integrable. In fact, T<2l(x) is already outside 
2 2( -TT, TT), as we can see using the Parseval identity [Eq. (4.14)] for the 
coefficients (4.56). This relation between differentiability and convergence is 
not very constraining but, on the other hand, is quite general. Its formulation 
for arbitrary orthonormal bases can be seen in a short article by Schneider 
(1971). The convergence properties of trigonometric series constitutes a 
broad field indeed. The two-volume treatises by Zygmund (1952) and Bary 
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(1964) cover this ground in due detail. We have collected some of the results 
of this section in Table 4.3. 

4.4.7. The Gibbs Phenomenon 

Returning to Fig. 4.10(b) and the Fourier series of the one-pulse square 
wave with coefficients (4.55), we note that the convergence is particularly poor 
near the edge of the discontinuities. In Fig. 4.11 we have amplified the 
oscillations which take place. There is a characteristic overshoot in the kth

term truncated series on the order of9% which is called the Gibbs phenomenon. 

As k increases, the oscillations do not die out but move closer to the dis
continuity. The uniform convergence guaranteed by Dirichlet's result holds, 
of course, but refers to any subinterval which excludes the discontinuity 
points, and by taking sufficiently high-order truncations we can move the 
oscillations as near to the edge as we please. In designing an electronic 
square-pulse generator, for example, which builds this waveform through 
Fourier synthesis (i.e., by truncated sums of simple sinusoidal waves), one is 
generally interested in reproducing the overall shape of the pulses and having 
a more rapid convergence. To achieve this, some kind of smoothing has to be 
applied to the function so as to replace it by a similar-looking function with 

.751 
1.09211 1.09014 .. ] ] 

16 32 64 128 

1, 

Fig. 4.11. The Gibbs phenomenon. This is an amplification of Fig. 4.5 extending from 
x = '"/4 to '"/2 over the upper half of the rectangle height. The vertical arrows 
indicate the position of the maxima as they approach the discontinuity edge 
and the horizontal ones, their value,. The numbers beside the arrows give their 

location in units of figure width and discontinuity height. 
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no discontinuities and as highly differentiable as possible. We could also 
replace the Fourier coefficientsfn by fnsn, where {sn}ne.2' is a set of coefficients 
which fall off to zero for large n, thereby improving the convergence rate of 
the Fourier series. In fact, the two approaches are equivalent, and they bring 
in the concept of convolution on which we shall briefly digress. 

4.4.8. Product and Convolution 

Let Un}ne.2' and {sn}ne.2' be the Fourier coefficients of two functions f(x) 
and s(x) satisfying (for the moment) the Dirichlet conditions. Consider now 

(4.57) 

to be the Fourier coefficients of a new function g(x). The kth truncated sum 
of this function will be (Section 4.2) 

gk(x) = (27T) - 112 ,2; snfn exp(inx) 
lnl<;k 

= (27T)- 312 f" dzs(z) (" dyf(y) 2 exp[in(x- y- z)] 
L,. L,. '"i"'k 

= (27T)- 112 f,. dzs(z) r,. dyf(y)Dk(x- y - z), (4.58) 

where we have introduced the Dirichlet kernel (4.19). As we let k ---7- oo, the 
integral in y becomesf(x- z) by Dirichlet's result, and hence 

g(x) = (27T)- 112 {, dzs(z)f(x - z) = (27T)- 112 f,.dzs(x- z)f(z) 

=: (27T)- 1/2( S* f)( X). (4.59) 

This defines the convolution of the functions s(x) and f(x) on the interval 
( -7T, 7T ]. Its structure is analogous to the finite convolution of Section 3.1. 
We have also shown by (4.57)-(4.59) that if s(x) andf(x) satisfy the Dirichlet 
conditions, so does (s * f)(x). 

Exercise 4.22. Assume f(x) and g(x) are two functions satisfying the 
Dirichlet conditions. Show that their product 

h(x) = f(x)g(x) (4.60) 

will also satisfy them. Show that the Fourier coefficients of h(x) are 

hn = (27T)- 112 L fmgn-m = (27T)- 112 L fn-mgm. (4.61) 
me$ me$ 

This is the discrete convolution between the two sets of Fourier coefficients. These 
relations have been collected in Table 4.3. 
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4.4.9. Function Smoothing by the Lanczos a-Factors 

The graphical meaning of the convolution between two functions (4.59) 
can be brought out and applied to the problem of eliminating the Gibbs 
phenomenon by a particular example. Let s(x) be a rectangle function (4.24) 
of area (277)112, so that TJ = (277)112/e. The convolution of this with an arbitrary 
f(x) is 

JR(x) :== (277)-112(!* R<•.nl(x)) = (277)-112 r,. dyf(x- y)R<•.nl(y) 

Je/2 

= e- 1 dyf(x- y), 
-e/2 

(4.62) 

a function which represents at each point x the integrated mean of f(x) in an 
interval of width e. lfj(x) is a rectangle function, say,JR(x) will be a trapezium: 
the discontinuities of the original function have been smoothed over an 
interval e. In terms of the Fourier coefficients, using the rectangle function 
coefficients (4.25), we obtain 

fn R = fnR<,.•·n) = fn sin(ne/2)/(ne/2) =: fnan. ( 4.63) 

The coefficients an in (4.63) have thus the same effect on the Fourier coeffi
cients as the integrated mean on the functions. They are called the Lanczos 
a-factors (Fig. 4.5). Their effect on the improvement of convergence for the 
function in Fig. 4.11 is given in Fig. 4.12. The sequence of truncated sums 
is seen to converge to a trapezoidal shape. 

k-4 8 16 32 64 

.5~------~ ~-------4 ~------~ ~------~ ~-------4 
.0 1. 

Fig. 4.12. Convergence improvement through the Lanczos a-factors. Convoluting the 
function of Figure 4.11 with a recta!lgle function of width e = TT/6 [Eq. (4.63)], 
the truncated sums approach the trapezium limit with decreasing overshoot. 
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4.4.10. The 8-Function Smoothing 

Another particularly useful function for the process of smoothing 
discontinuous functions by convolution is one which we can define through 
its Fourier series as 

B(x, T) := (27T)- 1 ,I exp( -n2 T + inx) 
nef!l' 

= (27T)- 1 [1 + 2 n~ exp(-n2T)cosnxj 

= (27T)- 1{}3(x/2, e-•), T > 0, (4.64) 

where {}3 is one of the Jacobi theta functions [see Whittaker and Watson 
(1903, Chapter XXI) and the mathematical function tables of Abramowitz 
and Stegun (1964, Eq. 16.273)]. 

The theta function, as defined above, will be seen in Section 5.1 to be a 
solution to the problem of heat diffusion in a ring. It has been plotted in 
Fig. 4.13(a). It resembles a Gaussian bell function [exp( -x2/T), x E R] 
exhibiting a peak at x = 0 and falling off sharply for small values ofT. The 
Fourier coefficients of (4.64), 

-n 

Bn(T) = (27T)- 112 exp( -n2T), (4.65) 

n 

T=2.56 

~ 
" '' '. ' . m 

••••••••••••••••• o ~ •••••••••••••••• ~ 
~ ffl 

.. ~ . 
. 64 ~ ~ 
••••••••••••••• .o -···············~ 

l'o 
~ .. . 16 ' • 

............. ~· ~ ............. ~ 

s;se'~•o. 
tJ' tl 

.04 e ~ ........ ~ ' ' ' ' ·~········~ 
Fig. 4.13. The Jacobi theta function in Eq. (4.64) for (left) various values of the width 

parameter r and (right) their Fourier coefficients. 
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8 16 32 

1. 

Fig. 4.14. Convergence improvement by the 6-factors of Eq. (4.65) for a value of 
T = 0.005. 

for growing n, decrease faster than any negative power of In I; indeed, they are 
discrete points on a Gaussian bell. See Fig. 4.13. It follows that B(x, T) is 
infinitely differentiable in x. If ( 4.64) is placed in convolution with an arbitrary 
functionf(x) which we assume (here) to satisfy the Dirichlet conditions, 

J9<•>(x) := (27T)- 1 ' 2(f* 8(·, T)](x) = (27T)- 112 {,. dyf(y)B(x- y, T), (4.66) 

thef(x) is smoothed into anj9<'>(x) which is infinitely differentiable inx. The 
Fourier coefficients of (4.66) are then 

(4.67) 

which indeed decrease faster than any negative power of ini. In Fig. 4.14 
we have plotted the convergence of the truncated sums of a function with a 
discontinuity (the same as Figs. 4.11 and 4.12) with 8-smoothing. Further 
characteristics of the Gibbs phenomenon can be found in the books by 
Carslaw (1930, Chapter 9) and Dym and McKean (1972, Section 1.6). 

Exercise 4.23. Prove that the 8-function (4.64) tends toward infinity at x = 0 
as T-->- o+. Nevertheless, it encloses the unit area 

f .. dxB(x, T) = 1 (4.68) 

independently of the value ofT. In this respect it has two properties in common 
with the Dirichlet kernel: Eq. ( 4.20). Particularly, Eq. ( 4.68) will lead to the 
total conservation of heat in a ring (Section 5.1). Compare with Eq. (1.73}. 
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Exercise 4.24. Compare Figs. 4.12 and 4.14. Note that for r small, a narrow 
peak for 8(x, r) corresponds to a broad Gaussian bell for Bn, while for large r, 
the situation is reversed. This suggests a complementarity between the "width" 
of function and that of its Fourier coefficients. A rough measure of the former is 
the equivalent width 

Wt := J~ dxf(x)f/(0), (4.69a) 

which gives the width of a rectangle function with the same area as f(x) and of 
height /(0). This has been contrived mainly for "peak-like" functions and can be 
meaningless for others. Correspondingly, we can define the equivalent width for 
a set of discrete points as 

W, := L fn/fo 
ne.;z' 

with a similar interpretation and purpose. Prove the equality 

w,w, = 27r 

(4.69b) 

(4.69c) 

which accounts for the complementarity of widths in Fig. 4.13. Note that this is 
akin-but not identical-to the mathematical statement of Heisenberg's uncer
tainty relation in Section 7.6. 

Exercise 4.25. Using the Schwartz inequality, show that 

IU* g)(x)l ~ llfll llgll, (4.70) 

i.e., the analogue of Eq. (3.10). The result in Exercise 4.26 may be handy. 

Exercise 4.26. Show that the convolution (f * g )(x) can be written as an 
inner product between f*-the function /*(x')-and a translated, inverted 
(Do lf xg)(x'), i.e., 

(f * g )(x) = (f*, Do lf xg) = (lf- xDof*, g). (4. 71) 

Exercise 4.27. In this section we have differentiated functions and found 
their Fourier coefficients. Now consider applying the second-difference operator 
of Part I to the Fourier coefficients, i.e., let g = £f, defined as 

gn = fn+l - 2/n + fn-1, n E :!l'. (4.72a) 

Show by (4.40) that this corresponds to 

g(x) = -4 sin2 (x/2)/(x). (4.72b) 

4.4.11. Sum Truncation and Best Approximation 

In the preceding part of this section we have been concerned with the 
smoothing of discontinuous functions f(x) to a jS(x) [S = R in (4.62) and 
S = B(r) in (4.66)] in order to improve the convergence rate of the succession 
of truncated sums fk8(x). The smoothed function is not the original function, 
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however. This obvious remark is made in order to emphasize that when the 
criterion of "best approximation" of f/(x) to f(x) is that the norm of the 
residue vector r(x) := f(x) - f/(x) be minimal, the best approximation is 
obtained when only truncation is applied. To prove this, we generalize slightly 
the concept of truncated approximations, letting .Yt be the set of partial waves 
unaffected by truncation, i.e., fns = 0 for n ¢ .Yt. We now calculate straight
forwardly the norm of the residue vector: 

0 ~ llrll 2 = (f- fkS, f- fkS) 

= (f, f) - L J/Jn3 - L j;*Jn + L lfn3 l2 

nE.)f" nE.)f" nE.)f" 

= (f, f) + L IJ/ - fnl 2 - L lfnl 2 • (4.73) 
nE.)f" ne.)f" 

The last equality can be verified by expanding the last two summands. Now, 
the fn's are fixed and so is .Yt. The minimum value of the norm of the residue 
vector llrll is thus achieved when in (4.73) we set f/ = fn for all n E .Yt. We 
thus conclude that in any truncation set .Yt the best approximation to f(x) 
in the norm is provided by fk(x) constructed with the original Fourier coeffi
cients. We also conclude from (4.73) that 

(f,f);:: L lfnl 2 • (4.74) 
ne.)f" 

This is called Bessel's inequality. When the truncation set .Yt becomes the 
whole of :!l', (4.74) becomes Parseval's identity. Otherwise, it provides an 
upper bound to the norms of the truncated sums. 

Table 4.3 Various Operations and Properties Connected with Differentiation and 
Convolution of Functions and Their Fourier Coefficients 

Operation Function f(x) Fourier coefficients In 

Differentiation d• 
(in)"fn 

order p dx•f(x) 

Integration r dyf(y) (in)_,.!., n # 0 

Uo = 0) J(;-ll, arbitrary 

Second -4 sin2 xf(x) fn+l- 2fn + fn-1 
difference 

Convolution (f* g)(x) := fn dyf(y)g(x- y) (27T)112Jngn 

Product f(x)g(x) (27T) -1/2 2 fmgn-m 
me.2' 

Convergence IIJ<"lll < w Ifni ;;:; clnl-• 
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Table 4.4 A Short List of Functions and Their Fourier Coefficients 

Functionf(x) 

Single partial wave 'Pno(x) [Eq. (4.9)] 

Dirichlet kernel Dk(x) [Eq. (4.19), 
Fig. 4.3] 

Rectangle function R<•.nl(x) of width 
e and height TJ [Eq. (4.24), Fig. 4.4] 

Triangle function T'(x) of height h 
[Eq. (4.28), Fig. 4.6] 

Square wave s<P.nl(x) of P pulses of 
height TJ [Eq. (4.39a), Fig. 4.8] 

Polygonal function P(x) passing 
through (xk, P(xk)), k = 1, ... , N, 
with slopes mk and ek := xk + 1 - Xk 
[Eq. (4.88), Fig. 4.15(a)] 

Theta function () (x, -r) [Eq. (4.64), 
Fig. 4.13] 

Fourier coefficients In 

(27T) - 112, In I ~ k 
0, otherwise 

(2") - 1 ' 2 eT) (ne/2) - 1 sin(ne/2) 

(27T) 1 ' 24h/"n2 , n odd 
(2") - 1 ' 2"h, n = 0 
0, otherwise 

(2")- 1 ' 24iPTJ/n, n = (2k + 1)P, k E fr 
0, otherwise 

N 

- (2") - 112n- 2 L (mk + 1 - mk) exp(- inxk + 1), 

N k=1 n#O 
1-(27T)- 112 L ek[P(x,+l) + P(xk)J, n = 0 

k=l 

4.5. The Dirac o and Divergent Series 

Among the functions we have come across, three of them, the Dirichlet 
kernel, the rectangle function, and the Jacobi theta function (Eqs. (4.19), 
(4.24), and (4.64)], will now be used to introduce the subject of generalized 
functions such as the Dirac 8, its derivatives, and the divergent Fourier 
series which they represent. We shall also provid(; some concepts from 
functio.nal analysis so as to outline the proper framework for these objects. 

4.5.1. Three Functions and a Limit 

We shall be interested in the behavior of the Dirichlet kernel Dk(x) as 
k--+ w, of the rectangle function of unit area R<'· 11'l(x) as the width e--+ 0, 
and of the theta function B(x, -r) as -r tends toward zero from positive values. 

To focus on their common properties we shall denote them by 

B(x, 1/k), (4.75) 

respectively, noting that they are all real and even and enclose unit area. 
Their Fourier coefficients are, correspondingly (Table 4.4), 

~ k- {(277)-112, In! ~ k}, 
0 n - O, In! > k (277)- 1122kn- 1 sin(nj2k), (277)- 112 exp( -n2 jk). 

(4.76) 
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Now, if f(x) is a function satisfying the Dirichlet conditions with Fourier 
coefficients fn, then 

fnk := (27r)l12fnDn\ n E !!l', (4.77) 

will be the Fourier coefficients of the convolution (Section 4.4) of f(x) with 
(Jk(x): 

jk(y) = (27r)- 112 2; ]/ exp(iny) := (f * ~k)(y) 
nE;:< 

= f', dxf(x)Dk(y - x) = r, dxf(y - x)8k(x) 

= (S\ lr yf) = (lr -yS\ f), (4.78) 

where we have also written the expression as an inner product [see Eq. (4.71)]. 
Ask-> co, D~c(x) behaves peculiarly: it converges nowhere, oscillating faster 
as k increases. The rectangle and &-function become high and narrow, and 
all grow without bound at x = 0. Yet ( 4. 77) and ( 4. 78) have a well-defined 
limit: since Dn k -+ (277) - 112 for k-+ co,fn k -+ fn and jk(y) -+ f(y ). 

4.5.2. The Dirac 3 Symbol 

We can write symbolically 

lim (>k(x) =: 3(x) (4.79) 
k-+ 00 

and will call this the Dirac 8. It has the property 

(S, lryf) =I: dxf(x + y)3(x) = r, dxf(x)3(y- x) =f(y). (4.80) 

This is to be interpreted as the limit of (4.78) ask-+ oo, the symbol 3 being 
replaced by the limit of the integral of any of the sequences of functions 
( 4. 7 5). The Dirac 3 assigns to every continuous "test" function f(x) the num
ber f(O) [3: f H> (S, f) := f(O) E '6']. It is thus a mapping from the space of 
continuous functions onto the complex field. Such generalized mappings are 
called distributions. Following the mathematical physics usage, we shaii speak 
of them as generalized functions since, as we shall see, the Dirac 3(y - x) and 
other objects of that kind can be handled as if they were ordinary functions 
in almost every case. 

4.5.3. Divergent Series Representation 

The 3 Fourier coefficients can be found by their usual definition and 
(4.80) as 

Dn = (q>n, S) = (27T)- 112 J" dx8(x) exp(- inx) = (27r)- 112 = lim Dnk· 
-n k-co 

( 4.81) 
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The Fourier series representing the Dirac o is thus 

o(x) = (27T)-l 2 exp(inx). 
nE,Z' 

[Sec. 4.5 

(4.82) 

Although the actual sum of (4.82) is meaningless since the series diverges, the 
equation is consistent with the symbolic notation (4.79) and should be 
interpreted as the equality of the Fourier series for !)k(x) in (4.75) and (4.76)
or any other such sequence we may produce-when k --* oo. The divergent 
series representation can be handled consistently by exchanging sums and 
integrals while leaving the limit k --* oo out of sight. One verifies in this way 
that 

f(y) = f, dxf(x)o(y- x) = r, dxf(x){(27T)-l n~ exp[in(y- x)J} 

= (21r)- 1 n~ exp(iny)[f_", dxf(x) exp(inx)] 

= (27T) - 112 2 fn exp(iny ). (4.83) 
nE,Z' 

4.5.4. Derivative of a Function at a Point of Discontinuity 

We can gain confidence in the use of this convenient shorthand by 
applying it to the relation between the Fourier coefficients of the triangle 
function and its first two derivatives [Eqs. (4.54)-(4.56)]. In Section 4.4 we 
stopped short of analyzing the sequence of truncated sums [Fig. 4.1 0( c) and 
Eq. (4.56)] which gave rise to a divergent series. We can now tackle this 
question. The Fourier coefficients of the derivative of the one-pulse square 
wave of height D/2 := hj1r are 

s~l,hlnl' = ' = D[- on + exp(- in7T)<\]. { -2D(27T)- 1 ' 2 n odd} 
0, n even 

(4.84) 

The corresponding series should then represent the derivative of the one-pulse 
function with discontinuity D as 

d 
- s(l,D/2l(x) = D[- o(x) + o(x - 7r)] 
dx ' 

(4.85) 

where we have translated the argument of the second o [see Eq. (4.36)]. 
A glance at Fig. 4.10b, c tells us that as the sequence of truncated sums 
approaches a function with a discontinuity at some point xa the derivatives 
of these constitute a sequence of functions which grow at x = Xa. At the 
limit, intuitively, the derivative of a step function with discontinuity D at Xa is 
Do(x- xa). 

We verify the validity of (4.85) by introducing both members of the 
equality into an inner product with a continuous test function g(x), element 
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of "f'"D, with Fourier coefficients gn. One can proceed in two ways, either by 

using (4.84), 

(S', g) = 2; S~*gn = D 2; [-on + exp(- in1T)on]gn 
ne:!£ nE:!£ 

= -D(27T)- 112 2; gn + D(27T)- 112 2; gn exp( -in1T) 
nE:!£ ne:!£ 

= - Dg(O) + Dg( -1T), (4.86a) 

or alternatively by integration by parts and recalling the periodicity of all 

functions involved, 

(S', g)= J:" dx[ fx S(x)j* g(x) 

f" d 
= S(x)g(x)/':.n - -n dxS(x) dx g(x) 

= 0 - (D/2)[f" - rJ dx dg(x)fdx 

= -(D/2)[g(O)- g( -7T)- g(7T) + g(O)] =- Dg(O) + Dg(1T). 

(4.86b) 

We thus find 

(S<l,DI2l', g) = ( D(- 5 + lr _"5), g) (4.87) 

for arbitrary continuous g E 1'0 • We can thus state that the equality (4.85) 

between generalized functions represented by divergent series holds in the 

sense ( 4.87). 

4.5.5. The Polygonal Function 

We shall use the relation between derivatives of discontinuous functions 

and Dirac o's in order to find the Fourier coefficients of a polygonal function 

[Fig. 4.15(a)] whose graph joins the ordered set of points {x1" P(x~c)}, k = 

1, 2, ... , N, with straight lines. This function can be described in terms 

of the rectangle function ( 4.24) as 

N 

P(x) := 2; (m~cx + b~c)R<8k' 1l(x - X~c + 112), 

lc=l 

where 

k =I, 2, ... , N, 

(4.88a) 

(4.88b) 

(4.88c) 

(4.88d) 
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(x,,P(x,)) 

,/~~/ 
a n v n 

m, 
b 

~ .. . . . . .. . . . . 

' 
:.....:.:..:.:. 

j8 Fig. 4.15. (a) The polygonal function 
(m,-m,¥ (x-x,) 1 8 joining the points [x~c, P(x~c)], 

c .... , -r--.1_----+•~l--ll..!...------'6Lt• k = 1, 2, ... , N, by straight 
~ ! lines; (b) and (c) are its first 
8 .... 8 and second derivatives. 

and we identify 

(4.88e) 

To find the Fourier series, we differentiate (4.88) repeatedly [Figs. 4.15(b) 
and (c)]: 

N 

P'(x) = L m~cR<•~c· 1 '(x - X~c+ 112), (4.89) 
lc=l 

N 

P"(x) = L (m~c+ 1 - m~c)S(x - X~c+ 1). (4.90) 
lc=l 

The Fourier coefficients of (4.90) can now be computed easily using the 
translation relation (4.36). We find 

N 

P~ = (27T)- 112 L (m~c+l - m~c) exp( -inx~c+ 1). (4.91) 
/c=l 

The Fourier coefficients of the original function (4.88) are thus (4.91) multi
plied by (in)- 2 , n # 0, i.e., 

N 

Pn = -(27T)- 112n- 2 L (m~c+l - m~c) exp( -inx~c+ 1), (4.92a) 
lc=l 

while by direct integration of (4.84) we supply the coefficient 

N 

Po = (27T)- 112 ·t L e~c[P(xk+l) + P(x~c)]. (4.92b) 
lc=l 
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Exercise 4.28. Prove by direct calculation that (4.92) are indeed the Fourier 
coefficients of the polygonal function (4.88). 

Exercise 4.29. Examining the limits of (4.75), show that the Dirac Sis not an 
element of 2'2( -1r, 1r). 

Exercise 4.30. Show that the convolution of two Dirac o's is a Dirac S, i.e., 

(lf -y6, 1f _2 6) = r, dxS(x - y)S(x - z) = o(y - z). (4.93) 

This can be done either rigorously from (4.75), directly from (4.93) and exchange 
of integrals, or by the Fourier coefficients. 

Exercise 4.31. Assume you have a function f(x) whose Fourier coefficients 
repeat themselves modulo N, i.e., In = fn+N· Show that f(x) will be a sum of N 
Dirac S's "sitting" on equidistant points in ( -7T, 7T ]. This is called a "picket
fence" or" Dirac comb" generalized function. In fact, finite-dimensional Fourier 
transforms can be obtained in this way from Fourier series. 

4.5.6. The Derivatives of the Dirac S 

Once we have lost qualms in handling the divergent series representing 
the Dirac S, we can proceed with other such generalized functions. Recalling 
that differentiation of a function f(x) multiplies its Fourier coefficients fn by 
in, we can formally differentiate Eq. ( 4.82) p times and define the pth derivative 
of the Dirac o as represented by 

S<Pl(x) = dP8(x)jdxP = (27T)-l 2 (in)P exp(inx), (4.94a) 
ne;!l' 

with Fourier coefficients 

(4.94b) 

The validity and use of (4.94) are essentially the same as for the Dirac S 
except that we must now restrict the space of test functions to 'i!f<P>: p-times 
differentiable functions whose pth derivative is continuous. If g(x) is a 
'i!f<v>-function with Fourier coefficients gn, 

(s<v>, ll" 11g) = 2 8\r'* gn exp(iny) 
nE;!l' 

= ( -l)P(27T)- 112 2 (in)Pgn exp(iny) 
ne;!l' 
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i.e., the pth derivative of g(x) at y. This can be verified formally using integra
tion by parts in the inner product 

(fi<v>, lryg) = L: dx[dPo(x)fdxP]g(x + y) 

= (-l)P {, dxo(x)[dPg(x + y)fdxP] 

= (-l)P :;v [f~, dxo(x)g(x + y)], 

which reproduces the result in (4.95a). 

(4.95b) 

Exercise 4.32. The steps taken in Eqs. (4.95) involve reckless exchange of 
infinite series, integrals, and derivatives. The proper way to justify them is to 
define a sequence of functions dPok(x)/dxP with the property that 

(4.96) 

The pth derivative of the Dirichlet kernel and of the theta-function provide such 
sequences. The symbol o<Pl(x) follows the convention (4.79) on limits and integral. 
Again, fi<Pl can be seen as a mapping off on ( -l)Pj<Pl(O) E '??. 

Exercise 4.33. Show that 

o<Pl(- X) = ( -J)Po(Pl(x) (4.97) 

by means of its integral properties and its Fourier coefficients. 

Exercise 4.34. Prove that 

(T _ y!i, T _ 2 fi<Pl) = f_", dxo(x - y )o<Pl(x - z) = o<Pl(y - z). (4.98) 

Exercise 4.35. Prove that a "Taylor expansion" of the Dirac o 
( d) <X> p 

o(x + y) = -u-yO(x) = exp y -d o(x) := L ; o<Pl(x) 
X p~O p. 

(4.99) 

is meaningful. Place the extreme members of (4.99) into an inner product with an 
appropriate arbitrary test function. The appropriate test-function space will here 
be the '??"'-functions which have convergent Taylor expansion, i.e., the space of 
analytic functions on ( -'TT, 'TT]. Note that the Fourier coefficients of (4.99) are 
(27r) - 112 exp(iny ). 

Exercise 4.36. Prove in the same sense that the theta function (4.64)-(4.65) 
admits the formal representation 

(4.100) 

showing that the Fourier coefficients of both sides are equal. In Section 5.1 this 
will be seen to correspond to the time evolution of a localized infinitely hot spot 
in a conducting ring. Note the analogy with Exercise 1.27. 
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4.5.7. On Convergence of Function Sequences 

The reader who has felt uncomfortable differentiating discontinuous 

functions in Eq. (4.85) may well ask, on seeing Eqs. (4.99) and (4.100), 

whether infinite-order differential operators can ever be applied with any 

rigor to such beings as the Dirac o. The framework for these developments 

constitutes the body of functional analysis. We shall draw here only a rough 

map of this territory, using as reference points the concepts and examples 

which have appeared thus far. First, we must remark that we have used three 

kinds of convergence of sequences of functions {fk}k=l to their limits f: 

(a) Uniform pointwise convergence if limk_oo[fix) - f(x)] = 0 uni

formly for all x in the domain of the fk and f. This was the kind of 

convergence assured by the Dirichlet theorem. 

(b) Convergence in the norm (or strong convergence) iflimk_oo llfk- £11 = 
0. This is a less stringent condition and requires only that the 

function within the norm bars be square-integrable (in the sense of 

Lebesgue). We have anticipated in Section 4.1 that this space, 

2'2( -Tr, Tr), is particularly important in much of mathematical 

physics, and we shall have more to say about it below. 

(c) Componentwise convergence (or weak convergence) if 

lim (g, fk - f) = 0 
k-oo 

for all test functions g in some suitable space of functions !/'. 

"Suitable" spaces have been '{?(0>, <(?<Pl, <(?<oo>, or the space of 

analytic functions. This is a still less stringent requirement than 

convergence in the norm, and it is in this sense that sequences of 

functions converge to the Dirac S or its pth derivatives. Equality 

(or equivalence) of functions-ordinary or generalized-can be 

similarly conditioned. When we showed that the Fourier com

ponents of two expressions such as the divergent series for o<P>(x) 

in (4.94) or Eqs. (4.99) or (4.100) were equal, we were only proving 

weak equality in the sense (c). 

So that the inner product (g, f) will be finite when f is a generalized function 

in a class 9"' with Fourier coefficientsfn which increase with lnl, the class of 

test functions 9" to which g may belong must be such that its gn decrease even 

faster so that Ln g:Jn < oo. The "larger" 9"' is, the "smaller" 9" must be. 

The former is the 2'2-dual space of the latter. This is illustrated with the 

successive derivatives of the o and the nested <(?<P>-spaces. The space of func

tions which is self-dual in this sense is precisely that of square-integrable 

functions 2'2 ( -Tr, Tr), since there 11£11 = (f, f) 112 < oo. It can be shown that, 

in fact, 9" s 2'2( -Tr, Tr) s 9"', the relevant convergence being (b) and (c), 

respectively, for the elements in the last two spaces. 
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4.5.8. On Cauchy Sequences and Complete Function Spaces 

Since sequences of functions in 2 2 ( -7r, 7r) may converge (in the appro
priate sense) to objects outside this space, as in the case of the Dirichlet, 
rectangle, and theta functions "converging" to the Dirac o, it is useful to 
introduce a convergence criterion in order to characterize spaces which are 
complete, i.e., where the limits of sequences belong to the same space. We 
thus define a sequence of functions {fk}k'= 1 to be a Cauchy sequence if for 
every given e > 0 one can find anN such that for n, m > N, llfn - fmll < e. 
Now, a vector space endowed with a positive inner product where every such 
Cauchy sequence converges to a function within the space is said to be a 
Hilbert space. All finite-dimensional spaces are Hilbert spaces. A fundamental 
theorem by Riesz and Fischer states that 2 2(/) is a Hilbert space. Another 
Hilbert space one can construct is J2, the space of all infinite-dimensional 
vectors f := {fn}ne.2" with inner product (f, g)12 := Lne.2" fn*gn. As Fourier 
analysis and synthesis suggest, there is a mapping between elements in 
2 2( -7r, 7r), f, g, etc., and elements in J2, f, g, etc., which preserves the angles 
between any pair of vectors, as (f, g),p2 = (f, g)12. Such a mapping is said to 
be isometric. Moreover, this mapping is one-to-one and can be shown to 
transform the whole of 2 2(/) onto J2 and conversely. Such an isometric 
mapping is said to be unitary. The difference between isometric and unitary 
mappings appears only in infinite-dimensional spaces. The result for the 
mapping between 2 2 ( -7r, 7r) and J2 actually generalizes to another important 
theorem which states that any two (infinite-dimensional separable) Hilbert 
spaces can be mapped onto each other through a unitary transformation. 
Other Hilbert spaces besides 2 2( -7r, 7r) and J2 will be discussed in Part IV. 

4.5.9. Complete Bases for a Function Space 

The last subject to be outlined is the question of what constitutes a basis 
for 2"2 ( -TT, TT). A denumerable set of nonzero, linearly independent vectors 
{ cpn}nez is said to be a complete basis for a Hilbert space if for every one of its 
elements f, (f, cpn) = 0, n E :!£, implies f = 0. One can then find coefficients fn 
such that the sequence 

(4.101) 

converges in the norm to f. The set of vectors given by the imaginary exponen
tial functions (4.9), the Fourier basis for 2"2 ( -7r, 7r), is an example. Note that 
f(x) need not satisfy the Dirichlet conditions which refer to pointwise con
vergence but must only be in 2 2( -7r, 7r). If the basis is orthonormal [i.e., if 
( cpn, cpm) = Onm], the coefficients fn are simply ( cpn, f), and we can write 

fn = ( cpn, f), (4.102) 
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valid in the norm. Equation ( 4.1 02) is actuaiiy valid weakly for f E Y'. The 
basis is said to be dense in these spaces. 

4.5.10. Dirac's Generalized Basis 

When we deal not only with Hilbert spaces but with triplets Y s::: 
2'2 ( -71", 7r) s::: Y', completeness of a basis in the norm appears too stringent. 
Edging toward abuse of notation, we can speak of Dirac's generalized basis 
{8y}, Oy := u -yo E Y', where the label y ranges over ( -71", 71"]. Such a basis is 
to allow for the expansion of any f, weakly, as 

f = {, dyf(y )8y, f(y) = (by, f). (4.103) 

The vectors of this basis are orthonormal in Dirac's sense: 

(4.104) 

[See Eq. (4.93).] Exchanging the vector space" integral" ( 4.103) with ordinary 
integration, we can verify, for instance, 

or 

( <f>n, f) = ( <f>n, J:, dyj(y )Sy) = f_", dyj(y )( <f>n, U- yS) 

= L', dyf(y)(o, Uy<f>n)* 

= (271") -l/2 r, dyf(y) exp(- iny) = fn 

(ox, f)= ( Sx, r, dyf(y)Sy) = r, dyf(y)(Sx, 8y) 

(4.105a) 

= L~, dyf(y)8(y - x) = f(x). (4.105b) 

The two bases are related by Eqs. (4.102) and (4.103) as 

Ox = _2 (<t>n. Sx)<t>n = (271")- 112 _2 exp(- inx)q>n, (4.106a) 
~~ ~~ 

The point of view which emerges from the introduction of the F ourier-q> 
and Dirac-8 bases into generalized function spaces is that a vector f can be 
represented in the former as an infinite column vector with elements {fn}nE~ 
and in the latter as a column vector of height 271" whose "rows" are labeled 
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by a continuous index x E ( -TT, TT] and whose xth entry is f(x). The trans
formation from one representation to the other is achieved by 

f(x) = (Sx, f) = 2 (Sx, q>n)(q>n, f), (4.107a) 
ne.;Z' 

fn = (q>m f) = L: dx(q>n, Sx)(Sx, f), (4.107b) 

which are nothing more than the Fourier synthesis and analysis, Eqs. (4.32). 
In terms of vector components, we can visualize Eqs. (4.107) as the trans
formation through a "rectangular" matrix 4> = II'Pn(x)ll = II(Sx, q>n)ll with 
rows labeled by x and columns by n. Fourier synthesis (4.32a) is then the 
multiplication of 4> and the discrete-row vector Un), giving the continuous
row vector [f(x)], while Fourier analysis (4.32b) is the multiplication of the 
transposed conjugate 4>1 and [f(x)], giving back Un). In the latter case we 
integrate rather than sum over the continuous label in the matrix and vector. 

Exercise 4.37. Compare the point of view regarding <I> as a (passive) trans
formation between coordinates f(x) and In with that developed in Section 1.3. 
Note that in comparison with Eq. (1.28), thee- and S-bases play analogous roles, 
as do the 8- and cp-bases. 

Exercise 4.38. Verify that <I>, although "rectangular," is a unitary matrix. 
Show that <I>1<I> is, because of (4.10), an infinite unit matrix with discrete rows 
and columns, while <I><I>1 is, by virtue of (4.82), a unit matrix with a continuum of 
rows and columns and a Dirac o sitting along the diagonal. These are two repre
sentations of the unit operator in the cp- and S-bases, respectively. This will be 
elaborated in Section 4.6. 

Depending on the reader's inclination toward pure or applied mathe
matics, he may want to pursue the subject of generalized functions to their 
complete formulation, or he may be content with the physicist's point of view 
of accepting a reasonably working and economical structure and ask for the 
applications to justify its use. The work of Gel'fand et al. (1964-1968) (in five 
volumes) is a detailed rendering of the theory and fortunately not the acme 
of abstraction. Most texts on quantum mechanics or practical communication 
theory make extensive use of plane waves, localized states, or unit impulse 
functions, so there is little to be added in terms of the usefulness of the con
cepts and their adaptability to the degree of rigor demanded by the circum
stances. 

4.6. Linear Operators, Infinite Matrices, and Integral Kernels 

In Section 4.3 we introduced the translation and inversion operators lf a 

and D0 defined by Eqs. (4.36) and (4.41) as linear mappings in the space of 
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functions "f/D which satisfy the Dirichlet conditions. These can be extended 
to generalized functions as they stand. Later, in Section 4.4 we dealt with the 
operation of differentiation which is linear but which can map elements of 
"f/D out of this space; in particular, in Section 4.5 we saw that discontinuous 
functions were transformed under differentiation into generalized functions 
in !/'' represented by divergent Fourier series. Repeated integration, on the 
other hand, can bring functions in !/'' back into rv. We shall ask our 
operators here to be linear mappings in the space of generalized functions, 
but we cannot in general be too precise about their domain and range. In 
this section, rigor is explicitly disclaimed. We are presenting here mathematics 
as applied in quantum mechanics a Ia Dirac. It has intuitive appeal and 
represents a real economy in notation. 

4.6.1. Operators and Their Matrix Representatives 

Let A be a linear operator whose action on the vectors of the ortho
normal cp-basis is known: 

Acpn = CJ>n A = L AmnCJ>m, 
me~ 

where we have used (4.102) for cp~ so that 

Amn = ( CJ>m, CJ>n A) = ( CJ>m, A CJ>n). 

Its action on any infinite linear combination f of these is then 

Af = A L fnCJ>n = L fnACJ>m = 
nE:!}': nEf?X 

-· fA = "" j, Arn -. ~ m •m· 
mE !?X 

(4.108a) 

(4.108b) 

(4.109) 

Performing the inner product with the vectors of the cp-basis, or using their 
linear independence, we find 

fmA = L Amnfn· (4.110) 
nEf?X 

The column vector Un) is seen to transform into Um A) by multiplication 
by the matrix A = II Amnii, which represents the operator A in the c.p-basis. 
The matrix is infinite, its rows and columns numbered by m, n E !Z, but 
otherwise our construction proceeds exactly as in Section 1.3. The ortho
normal basis we shall use in the remainder of this section is the Fourier 
cp-basis. 

Exercise 4.39. Find the matrix Ta representing the translation operator lf a· 
This can be done by either calculating (lfa)mn by (4.108b) and (4.36a) or, for 
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fT = lraf, comparing (4.110) with the result (4.36b). One finds the matrix to be 
diagonal: 

(T<l)mn = Smn exp(ina). (4.111) 

In particular, for 1r 0 = 1, (4.111) is the infinite unit matrix. 

Exercise 4.40. Find the matrix 10 representing the inversion operator 00 • 

Again, this can be done by (4.108b) or (4.110) using (4.41). It is an antidiagonal 
matrix: 

(4.112) 

Exercise 4.41. Verify that the products of translations and inversion matrix 
representatives (4.111) and (4.112) follow Eqs. (4.42). 

Exercise 4.42. Consider the operator of differentiation: f<P> = VPf. Find the 
matrix V representing it, again, either by (4.108b) or by (4.110) and (4.51). One 
can show V to be a diagonal matrix whose elements are 

(4.113) 
Find its powers as well. 

4.6.2. Operators and Integral Kernels 

We also have the Dirac generalized basis to describe the function vector 
space [Eq. (4.103)]. Correspondingly, operators will have their matrix 
representatives in this basis. These "matrices," however, will have their rows 
and columns labeled by continuous indices in the range ( -7T, 7T]. We follow 
the argument ( 4.1 08)-( 4.11 0), assuming now that the action on Dirac's basis 
is known: 

A5y = 5y A = f_", dxA(x, y )5x, 

having used (4.103) on s:, where 

A(x, y) = (5x, 5y A) = (5x, A5y). 

As before, we can find the action of A on any f by (4.103) as 

Af = A f_",. dyf(y)5y = f_", dyf(y)A.5y 

(4.114a) 

(4.114b) 

= f_", dx l",. dyf(y)A(x, y)Sx =:fA= 1: dxfA(x)Sx· (4.115) 

Performing the inner product with the vectors in the 5-basis and using 
(4.104), or by linear independence alone, we find 

JA(x) = r,. dyA(x, y)f(y) (4.116) 
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as the analogue of (4.110) in the Dirac basis. Equation (4.116) shows that the 

operator A is represented here by an integral kernel A(x, y) which acts as if 

it were a matrix IIA(x, y)ll with a continuum of rows and columns acting on 

like column vectors, integration replacing sum over the entries. 

Exercise 4.43. Show the integral kernel Ta(x, y) representing the translation 
operation u a to be 

Ta(X, y) = 8(x - y + a) (4.117) 

(where a, x, andy are to be considered modulo 27T ), i.e., an off-diagonal" matrix.'' 
Verify that (4.117) in (4.116) correctly reproduces the translation (4.36a). In 
particular, for u 0 = ~ this defines the unit or reproducing kernel. 

Exercise 4.44. Show the integral kernel l 0(x, y) representing inversions U0 

to be 

10(X, y) = 8(x + y), (4.118) 

i.e., an antidiagonal "matrix." 

Exercise 4.45. Verify the products (4.42) for the integral kernels (4.117) and 
(4.118) representing the operators. 

Exercise 4.46. Find the integral kernel V(x, y) representing the operator of 
differentiation W. Using (4.98), show that 

V(x, y) = i)<ll(x - y). ( 4.119) 

Find also the integral kernel representing "iJP. 

4.6.3. The Link: Fourier Transformation 

The matrices representing the operator A in two bases can be related, 

as in Section 1.3, by the transformation linking the two bases. Indeed, 

between the Fourier and Dirac bases we have 

A(x, y) = (&x, A&y) = L (&x, Cf>m)(cpm, Acpn)(cpn, &y) 
m,nE;!l' 

= (27T)- 1 L Amn exp[i(mx- ny)], 
m,ne;z 

Amn = ( Cf>m, Acpn) = r, dx L: dy( Cf>m, &x)(&x, A&y)(Sy, Cf>n) 

= (27T)- 1 1: dx r, dyA(x, y) exp[ -i(mx- ny)]. 

(4.120a) 

(4.120b) 

Exercise 4.47. Verify the relations (4.120) between the matrices and integral 
kernels representing the translation, inversion, and differentiation operators 
found above. 
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Exercise 4.48. Interpret Eqs. (4.120) as the matrix equations 

(4.120c) 

where <I> is the "rectangular" matrix suggested in the discussion at the end of 
Section 4.5. 

Exercise 4.49. Prove 

lf' a "i/ = "i/lf' a, 

Da'V =- 'VDo 

(4.12la) 

(4.121 b) 

by their action on an arbitrary function f(x), on its Fourier coefficients, or their 
matrix or integral kernel representatives. 

4.6.4. Hermitian and Isometric Operators 

Proceeding along the lines of Chapter I, in classifying and studying the 
properties of operators, now in function (Hilbert) spaces, we shall define an 
operator IHI to be hermitian if 

(IHif, g) = (f, IHig) ( 4.122a) 

for all f and gin the domain of IHI. It is easy to see that if (4.122a) holds and 
the tp- and ~-basis vectors are in the domain of IHI, then IHI is represented by a 
hermitian matrix and kernel, i.e., those which are equal to their transposed 
conjugates: 

H(x, y) = H(y, x)*. 

(4.122b) 

(4.122c) 

In particular, the inversion operator 00 and - i"V are represented by manifestly 
hermitian matrices and kernels [Eqs. (4.112), ( 4.113), ( 4.118), and ( 4.119)]. 

An operator llJ is said to be isometric if 

(I!Jf, lUg) = (f, g) ( 4.123a) 

for all f and gin its domain. Again, for the vectors in the tp- and ~-bases we 
can write out the inner product and find the condition on the representatives 
to be 

2 u:.numl = on,l> (4.123b) 
mEf!l' 

f .. dyU(y, x)*U(y, z) = o(x- z). (4.123c) 

The translation operators lr a are represented by such matrices and kernels 
[Eqs. (4.111) and (4.117)]. 
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4.6.5. Self-Adjoint and Unitary Operators 

Not much has been said here about the domain of the operators, although 
this is in fact the key element which allows one to know when the results of 
finite-dimensional matrices on complete eigenbases can be translated to the 
infinite-dimensional case. For this, let us remark that the adjoint At of an 
operator A is defined as that linear mapping which, if it exists, satisfies 
(A tf, g) = (f, A g). A self-adjoint operator is a hermitian operator where the 
domain of A and At are the same. Similarly, a unitary operator is an isometric 
one where this happens. 

It is for self-adjoint and unitary operators that powerful results on eigen
bases hold. Fortunately all of the operators which we shall handle and most 
of the operators the reader is likely to meet in quantum mechanics are either 
self-adjoint or unitary or have extensions which are. However, one does 
occasionally stumble upon innocuous-looking operators which under closer 
scrutiny turn out to be only hermitian or isometric, but it would not serve 
the purpose of this text to insist too much on these. 

Exercise 4.50. Show that the translation and differentiation operators are 
related by 

lra = exp(a'V). (4.124) 

This is easy to verify for the matrix representatives (4.111) and (4.113) or for the 
kernels (4.117) and (4.119) using (4.99). It is true for the operator as well, due to 
the fact that - i'V has a self-adjoint extension here. From (4.124) it is also clear 
that lr a commutes with V. 

4.6.6. Some Facts Concerning the Spectra and Eigenbases of Self-Adjoint 
Operations 

When a vector f in the domain of an operator A satisfies 

Af = Af, (4.125) 

it is said to be an eigenvector of A with eigenvalue A. This definition is the 
analogue of that given in Section 1.7 for finite-dimensional spaces and has 
already appeared in ( 4.46) in the language of functions. The set of all possible 
eigenvalues A in ( 4. I 25) constitutes the point spectrum of A. In addition to the 
point spectrum (values of A such that A - A~ has no inverse), operators may 
have a continuous spectrum (values of A for which A - A~ is one-to-one but 
not onto). This is the main difference from the matrix spectra of Section 1.7, 
which are only point spectra. For rigged Hilbert spaces, i.e., triples of spaces 
Y' c .P2(/) c Y'' with an inner product, briefly presented in Section 4.5, 
one can define generalized eigenvectors f E Y'' of A by the weaker property 
(A tg, f) = A(g, f) for every g E Y. The main facts concerning eigenvectors 
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and eigenvalues of self-adjoint and unitary operators follow those given in 
Section 1.7, namely: (a) The spectra of self-adjoint and unitary operators are 
subsets of, respectively, the real line and the unit circle. (b) Eigenvectors 
corresponding to different eigenvalues are orthogonal. The proofs follow 
(1.106) and (1.112). (c) The set of eigenvectors of a given self-adjoint or 
unitary operator constitutes a complete generalized basis for the Hilbert space. 
(d) The eigenvalues can be used to label the eigenvectors; if the subspaces 
corresponding to a given eigenvalue are of dimension higher than 1, however, 
one or more extra operators commuting with A and among themselves have 
to be found in order to resolve the labeling degeneracy. 

4.6.7. The Fourier and Dirac Bases 

Regarding the operators we have been working with, we have already 
remarked that the Fourier basis {cpn}ne.Z is the eigenbasis of all lra. In fact, 
it is also the eigenbasis of - iV since 

n E fl'. (4.126) 

This can be ascertained easily from ( 4.50) or ( 4.113) and links with the 
previous fact by ( 4.124). The cp-basis could have been constructed in searching 
for the eigenbasis of - iV in the space of periodic functions of period 27T. The 
spectrum of - iV on this space is the set of integers fl'. [If this domain were 
not specified, the eigenfunctions would be exp(icx) forcE '6". Were we to ask 
for the domain to be instead that of functions in [0, oo ), - iV would not be 
self-adjoint.] 

Exercise 4.51. Construct the Fourier basis for ..'!'2 ( -?T, 7T) as an eigenbasis 
of 'o/'2 . This leaves <pn and <p -n belonging to the same eigenvalue - n2 and hence 
not uniquely labeled. As detailed in Section 1. 7, one has to search for other oper
ators to resolve the labeling degeneracy. Try 00 which satisfies (4.121b) and show 
that it leads to the sine and cosine Fourier series functions 2 - 112( <pn ± <p -n). 

Turning to the Dirac S-basis, assume we have an operator IK which is 
represented by a diagonal kernel K(x, y) = o(x - y)k(x), where k(x) is some 
continuous function of xE(-?T,?T]. From (4.114) we can then see that the 
elements of the S-basis are eigenvectors of IK, as 

y E ( -?T, 7T], (4.127) 

and can thus be used to define Dirac's basis as an eigenbasis of such operators. 

Exercise 4.52. Show that the action of function operators such as (4.127) on 
the vectors of function space is 

!Kf = k (S) f, i.e., (!Kf)(x) = k(x)f(x). (4.128) 
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Exercise 4.53. Construct a general operator represented by a diagonal 
matrix as Gmn = 8mngn. Show that the action of these convolution operators on a 
general vector is 

Gf = g (cp) f, i.e., (Gf)(x) = (g * f)(x). (4.129) 

The concepts outlined in the last two sections will be used in Chapter 5 
and in Part III on Fourier integral transforms, where the domain of all 
functions will be the full real line. For the reader interested in pursuing the 
subject of operator spectral theory, we may suggest one of the volumes by 
Gel'fand eta/. (1964, Vol. 4, Chapter 1). The general subject of operators in 
Hilbert spaces is a broad subject indeed. Classics in this field are the works of 
Dunford and Schwartz (1960), Courant and Hilbert (1962), Yoshida (1965), 
and L. Schwartz (1966). The book by Kato (1966) presents results on spectra 
and perturbations for finite- as well as infinite-dimensional spaces. 

Closer to our approach and in the specific field of Fourier series, the 
volume by Whittaker and Watson (1903, Chapter IX) gives a reasonable 
survey of the field as it stood at the turn of the century. Selected modern 
treatments-in the vein of functional analysis-are those of Lanczos (1966), 
Edwards (1967), Dym and McKean (1972), and Oberhettinger (1973). Most 
texts on mathematical methods in physics will have at least one chapter 
devoted to Fourier series, although those dealing with quantum mechanics 
will tend to present the vector space approach of this section. We recall the 
books by Messiah (1964) and Fano (1971). 

Infinite-order differential operators such as (4.124) and others which 
will appear in the following chapters are one of the bases for Lie groups and 
algebras [see Miller (1972)]. On hyperdifferential operators of"higher" types 
such as (4.100), i.e., exponentials of second-order differential operators, there 
are the mathematical treatments by Treves (1969), Steinberg and Treves 
(1970), and Miller and Steinberg (1971). 

4.7. Fourier Series for Any Period and the Infinite-Period Limit 

In this section we shall provide the Fourier series expression for the 
expansion of periodic functions of period 2L. This will serve to prepare the 
way for describing the vibrating string in Section 5.2 and, in letting L--+ oo, 
finding the Fourier integral transform, which is the subject of Part III. 

4.7.1. Fourier Series for Arbitrary Period 

Periodic functions of period 21r can be expanded in their Fourier series, 

f(x) = (27T)- 112 2: fn exp(inx) (4.130a) 
ne;z 

fn = (27T)- 112 l: dxf(x) exp( -inx), (4.130b) 
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and the Parseval identity is 

(f, g) = f_", dxf(x)*g(x) = n~ fn*gn. (4.130c) 

It is often convenient to have explicit formulas giving a similar expansion for 
functions of arbitrary period 2L. We thus define the following quantities: 

q "= xL(Tr so x E ( -Tr, Tr] => q E ( -L, L], (4.131a) 

fnL "= (L/Tr) 112Jn, JL(q) := (L/Tr)- 1'2J(x). (4.131b) 

Substituting (4.131) into (4.130) and dropping the L onJL(q), we find the 
period 2L Fourier series, 

f(q) = (2Tr)- 112(Tr/L) 2 fnL exp(TrinqfL), 
ne~ 

fnL = (2Tr)- 112 fL dqf(q) exp( -TrinqfL), 

and the Parseval identity reads 

(f, g)L -=JL dqf(q)*g(q) = (Tr(L) 2 ff*gnL· 
-L ne~ 

(4.132a) 

(4.132b) 

(4.132c) 

For L = Tr we regain (4.130). Of course, all the results on Fourier series in the 
form (4.130) hold for (4.132) with the appropriate changes of scale (4.131). 

4. 7 .2. Odd Functions on (-L, L) 

In Section 5.2 we shall be interested in Fourier expansions of functions 
which are .odd under reflection through the origin. Since f( -q) = -f(q) 
and f(O) = 0 = f(L), the values in the interval (0, L) are sufficient to deter
mine the values of the Fourier coefficients (4.132b), which will display the 
symmetry of odd functions: J!:_ n = -fn L (Table 4.2). The most economical 
description can thus be seen to be in terms of the Fourier sine series and its 
partial-wave coefficients/;- = 2112ifnL· Using the oddness off(q) and defin
ing for convenience 

n = 1, 2, 3, ... , 

Eqs. (4.132) can be written again as 

f(q) = (2/L) 112 2 fn° sin(nTrq/L), 
ne~+ 

fn° = (2/L)112 iL dqf(q) sin(nTrq/L), 

(f, g)L0 -=JL dqj(q)*g(q) = L: J~*gn°· 
0 ne~+ 

(4.133) 

(4.134a) 

(4.134b) 

(4.134c) 
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We see thus that a function f(q) E "f/D for q E (0, L) can be expanded in a 
series of sine functions with all the properties of the Fourier series. Outside 
this interval, however,f(q) will be odd under inversions and with period 2L. 

Exercise 4.54. Consider a rectangle function of width e and height TJ centered 
at q = q0 , i.e., Rcs.nl(q - q0 ). Find its sine Fourier coefficients 

( 4.135) 

In particular, note that the series coefficients imply RCL+<,nl(q - L/2) = 
RCL-s,nl(q - L/2). How do you interpret this fact in view of the antisymmetry of 
the periodic functions under inversion? Note that the rectangle function in (0, L) 
has a corresponding negative "phantom" rectangle in (-L, 0). This will turn out 
to be the Green's function for elastic media with fixed boundaries in Section 5.2. 

Exercise 4.55. Under the assumption that f(q) is even under inversion 
through the origin, find from (4.132) the analogue of (4.134), expanding f(q) in 
cosine functions. This is simply 

f(q) = (2/L? 12 2 fn• cos(mrxfL), 
nEo,.2"+ 

(4.136a) 

fn• = (2/L)112 LL dqf(q) cos(mrxfL), (4.136b) 

(f, g)Le :=1L dqf(q)*g(q) = 2 j;.*gne· 
neo.,2"+ 

(4.136c) 

Note that if f(q) is assumed differentiable, limq~o.L df(q )jdq = 0. 

4.7.3. The Limit L -7 co and Fourier Integral Transforms 

We now turn back to (4.132) and examine what happens when we let 
L--? co. It is convenient to introduce the further new variables 

p := rrn/L E {0, ± 6p, ± 26p, .. . } =: rr!!l'(L, 

J(p):=JnL = (L(rr)1 12fn· 

Equations (4.132) can then be written in the form 

6p := rr(L, 

f(q) = (2rr)- 1 ' 2 2 6p](p) exp(ipq), 
PEn:!l'/L 

J(p) = (2rr)- 112 LLL dqf(q) exp( -ipq), 

(f, g)L = JL dqj(q)*g(q) = 2 6pf(p)*g(p). 
-L PEn:!l'/L 

( 4.137a) 

(4.137b) 

(4.138a) 

(4.138b) 

(4.138c) 

As in Section 3.4, the limitL--? co is seen to lead to Riemann integration over 
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p E f!l in (4.138a) and (4.138c) as 11p---+ 0. Provided the limits exist, we can 
write 

f(q) = (27T)- 1'2 1: dpj(p) exp(ipq), 

f(p) = (27T)-li2 L: dqf(q) exp( -ipq), 

cr, g)== 1: dqf(q)*g(q) = 1: dpj(p)g(p), 

(4.139a) 

(4.139b) 

(4.139c) 

where/(p) now stands for the function of p E 7T!!ZjL extended to the full real 
line by a step function which takes the value ](p) for all p in the intervals 
centered at the original points. In Section 7.1 we shall prove the Fourier 
integral theorem [Eqs. (4.139)] independently and shall comment on its 
range of validity. In Section 3.4 and here we have shown that (4.139) arises 
formally from Fourier finite transforms and series. 
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Fourier Series in Diffusion 
and Wave Phenomena 

One of the main fields of application of Fourier series is in finding the solution 
of processes governed by linear partial differential equations where the space 
derivative is the Laplacian. In such processes, it is the local curvature of the 
disturbance which is subject to the time development as determined by the 
time derivatives. If the latter is a first-order derivative, we have the diffusion 
equation [Eq. (5.1)], where the rate of change in temperature is proportional 
to its local curvature. In the wave equation [Eq. (5.15)], it is the acceleration, 
the second time derivative, which responds linearly to the disturbance curva
ture. If the boundary conditions are periodic with some period 2L, Fourier 
series will provide an expansion of the solution in terms of a basis of Laplacian 
eigenfunctions with exactly these periodicity conditions. 

The diffusion equation is analyzed in Section 5.1, and in Section 5.2 the 
wave equation is presented. The boundary conditions proposed in the latter 
are those of a fixed-end string rather than those of a vibrating ring, say. 
This is done partly because of the general interest of constrained elastic media 
and partly for the opportunity it provides to illustrate the use of the Fourier 
sine series. In both cases we present several approaches: (a) the Green's 
function treatment, (b) normal modes, (c) hyperdifferential time-evolution 
operators, and (d) for the wave equation, traveling waves. In Section 5.3 we 
apply Fourier series to describe a mechanical lattice composed of an infinity 
of masses and springs. 

5.1. Heat Diffusion in a Ring 

In this section we derive the diffusion equation from physical con
siderations about heat conduction. This partial differential equation is easily 

195 
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solved by Fourier series, the theta function of Section 4.4 being the Green's 
function for the system. Operator methods, introduced later, will be seen to 
abbreviate the derivation. 

5.1.1. The Heat Equation 

A homogeneous conducting medium whose temperature f(x, t) is a 
function of the point x at time t will satisfy the heat equation 

:/(x, t) = a2"iPf(x, t), (5.1) 

where a is the diffusion constant given in terms of the conductivity K, mass 
density fL, and the specific heat s of the medium. Equation (5.1) states that 
the rate of change of temperature with time at a point is proportional to the 
local curvature of the function in the direction of concavity ("nature hates 
vacua"). The constant a2 describes the time scale of the diffusion process. 

We shall sketch how Eq. ( 5.1) arises in a one-dimensional ("thin rod") 
medium. See Fig. 5.1. The heat flux <D(x, t) across a point x (in calories per 
unit time) is observed to be proportional to the temperature gradient at x 
(in °K per unit length), i.e., <D(x, t) = - K of(x, t)fox, the proportionality 
constant K being the conductivity of the medium and the minus sign indicating 
that heat flows from warmer to colder regions. The net flux of heat into the 
segment extending from x to x + ilx is <Dnet(x, t) = <D(x, t) - <D(x + ilx, t) 
and results in a change of temperature. The number of calories needed to 
raise the rod element mean temperature by I °K is given by the specific heats 
of the material times the linear mass density fL times the length ilx. Thus 
<Dnet(x, t) = fLS LlX of(x, t)fot. Equating the expressions involving the tem
perature, dividing by ilx, and letting ilx-+ 0, one obtains Eq. (5.1) in one 
dimension. The basic arguments outlined here can be repeated for heat 
diffusion in two, three, or more dimensions. 

The differential equation (of parabolic type) in Eq. (5.1) still has to be 
complemented by boundary conditions in time and space in a manner which 

X 

I 
I 

~(xt.1x) 

xt.1x 
Fig. 5.1. Temperature and heat flux in 

a thin rod. 
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will be brought out below. In what follows, we shall absorb the constant a2 

into rescaling the time units. In the resulting formulas, the diffusion constant 
a can be regained by replacing t by a2t. 

Equation (5.1) for the temperature f(x, t) can be multiplied on both 
sides by the heat capacity C (in calories per °K per unit volume), giving an 
identical equation for p(x, t) := Cf(x, t); the amount of heat per unit volume 
Equation (5.1) then describes a compressible but nonevanescent fluid which 
can represent such diverse processes as the interpenetration of one liquid by 
another or the diffusion of neutrons through matter. 

5.1.2. Solution by Fourier Series 

The boundary conditions we use here to illustrate the use of Fourier 
series describe a conducting ring of unit radius, where x represents the arc 
length. A ring with arbitrary radius does not introduce any novel features: it 
can be easily treated using the form ( 4.132) for the series. The boundary con
ditions in space are thusf(x, t) = f(x + 2rr, t), and the temperature function 
can be taken to represent a vector f(t) in the function space described in 
Chapter 4. Equation (5.1) thus becomes the vector equation (with rescaled 
time) 

d 
-1 f(t) = V2f(t). 
(;{ 

(5.2) 

In the <p-basis, (5.2) implies the equality of the corresponding column-vecror 
coefficients. Those on the left-hand side are f,,(t) := dfn(t)fdt, while those on 
the right can be found from (4.51). Hence (5.1) plus the periodic boundary 
conditions are equivalent to the set of equations 

n E !!!'. (5.3) 

[The process of finding (5.3) from (5.1) is analogous to the uncoupling of the 
lattice equations of motion in Chapter 2. From the second-order partial 
differential equation (5.1) we thus find an (infinite) set of first-order ordinary 
differential equations. The x and t derivatives are now uncoupled. The 
interaction operator is the Laplacian 'o/' 2 , in correspondence with the second
difference operator which appeared in Chapter 2.] 

The general solution of (5.3) is of the type en exp(- n2 t), with arbitrary 
constants en which are fixed when the initial conditions in time are specified. 
For t = 10 , let the temperature be f(t0) with Fourier components fn(t0). The 
constants en can then be uniquely evaluated in terms of the initial condition 
yielding 

n E !!!', (5.4) 
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as the general solution of (5.3). The original temperature functionf(x, t) can 
finally be regained as the Fourier synthesis of (5.4), i.e., by Eq. (4.32a), 

f(x, t) = (2-rr)- 112 2 fn(t) exp(inx). (5.5) 
nezt" 

5.1.3. The Green's Function and Fundamental Solutions 

We note that the Fourier coefficients (5.4) of f(x, t) are the product of 
the Fourier coefficients off(x, t0) times exp[- n2(t- t0)], which are the Fourier 
coefficients of the theta function 8(x, t - t0 ) in Eq. (4.64), times (27T) 112• The 
temperature function (5.5) will thus be the convolution of the two, i.e., 

f(x, t) = [8(-, t - t0) * f(-, t0)](x) 

= r, dx'8(x - x', t - t0 )f(x', t0). (5.6) 

This expression has a very transparent physical meaning. To bring this 
out, consider the special (unphysical) case where the initial conditions are 
f(x', to) = o(x' - Xo), i.e., an infinitely hot spot at Xo. The temperature 
thereafter is then given by (5.6) as the fundamental solution 

f(x, t) = 8(x - x0, t - t0), (5.7) 

which is a theta function centered at x 0 • See Fig. 4.13. 
If the initial temperature distribution were a finite collection of hot 

points at X;, that is, 2,;/;o(x - x;), the resulting solution would be a sum of 
8's centered at X; with coefficients;;. An arbitrary initial condition f(x, t0 ) 

can be seen as a sum-a Ia Riemann, gone to the limit-of o's distributed 
over x' E ( -1r, 1r] with coefficients f(x', t0 ) dx'. The resulting temperature 
distribution is then (5.6). The theta function is thus the Green's function for 
diffusive processes; it appears as an integral kernel in (5.6) and relates the 
initial condition at (x', t0 ) and its effect at (x, t). It has the properties: 

(a) It is an even function of space: 8(x, t) = 8(- x, t), which means that, 
preserving their time ordering, the points of cause x' and the points of effect x 
can be exchanged. This is the principle of reciprocity. 

(b) The effect of x' on x depends only on their relative separation x' - x, 
as can be seen in the corresponding functional dependence of the Green's 
function: the system is translationally invariant. 

(c) The system is invariant under inversions since the Green's function 
depends only on the absolute value lx' - xi. (Compare with Section 2.2.) 

The theta function 8(x, t - t0 ) is infinitely differentiable in x and in 
t > t0 as its Fourier series shows. Since the solutionf(x, t) is a convolution 



www.manaraa.com

Sec. 5.1) Chap. 5 • Diffusion and Wave Phenomena 199 

of the initial condition with 8(x, t - t0), it follows that f(x, t) itself will also 

be infinitely differentiable in the half-plane (x, t), t > t0 • 

5.1.4. The Time-Evolution Operator 

From the above discussion it follows that the integral kernel given by 
the Green's function 8(x, t) acts as a linear operator, 

f(t) = G(t - t0)f(t0), (5.8) 

mapping the space of generalized functions which are the initial conditions 

f(t0) of the system on the space of infinitely differentiable functions for 

t > t0 • 

Since any linear combination of solutions of (5.1) is also a solution to 

this equation, the set of all solutions of the diffusion equation constitutes a 

linear vector space. 
Further properties of the Green's function are that total heat is preserved 

and that the set of Green's functions for all t > t0 constitutes a semigroup of 

integral kernels. This we leave to the reader to verify in Exercises 5.1 and 5.2. 

Exercise 5.1. Show that the total heat of the system 

Q := rn dxf(x, t) (5.9) 

is a constant, independent of time. This can be proven (a) by substitution of (5.6) 
into (5.9), exchange of integrals, and the property (4.68) of the theta function, or 
(b) by calculating the time derivative of (5.9), using the governing equation (5.1) 
and showing that the evaluated integral is zero due to the periodic boundary 
conditions in x. Another proof is suggested in Exercise 5.5. 

Exercise 5.2. Let the temperature function at time t be due to initial condi
tions at t1 and these in turn a consequence of an earlier t0 temperature distribution. 
Show that time evolution is a transitive process in the sense that 

f(·, t) = 8(·, t- t1) *f(·, t1) = 8(·, t- t1) * 8(·, t1- to) *f(·, to) 

= 8( ·, t - t0 ) * f( ·, fa), 

which is satisfied since 

(5.10) 

(5.11) 

Equation (5.11) can be proven either directly or by the product of the Fourier 
coefficients of the 8's in convolution. This associates to every timet ;;, 0 an integral 
kernel with (a) the composition law (5.11), (b) identity given by the Dirac 8, and 
(c) associativity. For negative time t the 8-function series is strongly divergent, so 
the general inverse for the set of integral kernels does not exist. We have thus a 
semigroup of time-evolution operators. 
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Exercise 5.3. Can a temperature distribution of the form of a rectangle or a 
triangle function be regressed in time at all? Find a condition so that a tempera
ture distribution allows time regression to - r. Can any temperature distribution 
be regressed in time indefinitely? Work in the Fourier basis only. 

Exercise 5.4. As Eq. (5.1) manifestly allows, search for its separable solutions 
fn(x, t) = Xn(x)Tn(t), n specifying the separation constant. By introducing this 
form into (5.1) and recalling the space boundary conditions, the solutions 
found will be of the form exp(- n2 t + inx) for n E :!t'. These are the "normal 
modes" for heat diffusion in the ring. The most general solution will be a sum 
over n of these solutions with coefficients determined from the initial condi
tions. Show that one regains the form (5.6) with the series development of the 
theta function. 

5.1.5. Hyperdifferential Form of the Evolution Operator 

The solutions of the diffusion equation lend themselves to a general 
presentation by hyperdif.ferential operators. One can formally expand the 
solution of (5.1) using the Taylor series in t around t0 as 

co (t - t )n an l a ] 
f(x, t) = 2 1 ° [i'T<f(x, t')/t·=t =: exp (t - t0) -a , f(x, t')/ 1·=t· 

n=O n. t t 
(5.12) 

Now, on the space of solutions of (5.1), the operator a;at is equivalent to \7 2, 

and hence (5.12) can be expressed as 

f(x, t) = exp[(t - t0)V2]f(x, t0 ), (5.13) 

which should then be equivalent to the time evolution (5.6) in terms of an 
integral kernel. [Compare with Eq. (2.38b).] It would appear that (5.13) can 
hold only when the initial temperature distribution is infinitely differentiable. 
Actually, (5.13) holds weakly for any generalized function f(x, t0 ) as can be 
seen when f(x, t 0 ) = 8(x - x 0 ) so that f(x, t) is the fundamental solution 
(5.7). The weak equality between the integral convolution (5.6) and the 
hyperdif.ferential operator in (5.13) was established in (4.100). 

We can state quite generally that the exponentiation of a second-order 
differential operator is weakly equivalent to the action of an integral kernel, 
both representing here the time-evolution operator G(t - t0) in Eq. (5.8). 
In Eq. (4.129) we characterized operators represented by diagonal matrices in 
the <p-basis as convolution operators. Since any powers or sums thereof are 
diagonal in this basis, G(r) = exp(r'V2) is clearly such an operator. 

Exercise 5.5. Prove total heat conservation using the hyperdifferential form 
of the solution. Note that (5.9) can be written as Q = (1, f( ·, t)), where 1 is the 
unit constant function in ( -17', 1'1']. The Parseval identity then allows us to write 
Q as an inner product in the <p-basis, which is manifestly time independent. 
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Exercise 5.6. Prove the semigroup property (5.11) from the corresponding 
time-evolution operator product 

G(O) = 1, (5.14) 

which in turn is an immediate consequence of the hyperdifferential form (5.13). 

Lest the solution of the diffusion equation appear trivial, let us remark 
that the greater practical difficulties in solving Eq. (5.1) appear when realistic 
boundary conditions are imposed as curves in the (x, t)-plane and when 
sources of heat or fluid are present. The latter case will be taken up in Part III 
in studying applications of the Fourier and Laplace transforms. The study of 
some boundary conditions will be taken up in the context of separating 
coordinates for the diffusion equation as an application of canonical trans
forms in Chapter 10. Meanwhile, two simple boundary conditions which can 
be reduced to the periodic case are suggested in Exercises 5.7 and 5.8. 

Exercise 5.7. Assume one has a conducting rod extending between two 
"cold walls" at x = 0 and x = 71" which maintain the conditions f(O, t) = 0 = 
/(71", t) for all t. Since exp(tV2) commutes with 00 [see Eqs. (4.121)], the "method 
ofimages" is applicable. It consists of choosing a rod to extend between x = -71" 

and 71", the segment ( -71", 0) being the negative mirror image of the temperature 
function in (0, 71"), i.e.,/{- x, t0 ) = - f(x, t0 ). This relation is preserved for all t. 
The description can be made using the sine Fourier series, Eqs. (4.134). 

Exercise 5.8. Assume now that the conducting rod has insulated ends at 
x = 0 and 71". As there the heat flux is zero, of(x, t)foxlx=o,n = 0 are the space 
boundary conditions. The "method of images" with functions symmetric under 
inversions will use the cosine Fourier series (4.135). The reader may find it worth
while before solving Exercises 5.7 and 5.8 to browse through Section 5.2 where the 
method of images is used for the wave equation with similar boundary conditions. 

5.2. The Vibrating String 

Fourier series are well suited for the description of wave phenomena in 
elastic media with Cartesian boundaries. The disturbance or characteristic 
f(x, t) of the medium we want to analyze will be governed by the wave 
equation 

c- 2 ~22 /(x, t) = V2f(x, t), (5.15) 

where c is a constant which will turn out to be the propagation velocity. 
Equation (5.15) has to be complemented by boundary conditions in space and 
time, typically 

f(x, t) = 0 for x E B,f(x, t0) = u(x),/(x, t0) = v(x), (5.16) 
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where B is a fixed boundary enclosing a finite region in x-space. Here we 
shall concentrate on finding the solutions of (5.15)-(5.16) describing a finite 
string with fixed ends. Various other boundary conditions and regions will be 
presented in Chapter 6. 

5.2.1. The Wave Equation 

Consider a thin string of linear mass density /L stretched with tension r 

between two points and allowed to undergo longitudinal or small transverse 
vibrations. Letf(x, t) be the elongation from equilibrium of the point x of the 
string at time t. Isolating the string element which extends from x to x + L'.x 
(Fig. 5.2, where the elongation is represented as transversal), we see that it is 
subject only to a net restitution force in the direction of the displacement. At 
X the force is - T oj(X, t)joX, While at X + f>x it is T of(x', t)jox'lx'~x+Ax• 
The net force is the sum of these two and will produce an acceleration 
- 82J(x, t)(ot 2 on the mass p.L'.x of the element. Using Newton's laws, 
dividing by L'.x, and letting L'>x--+ 0, we obtain the wave equation (5.15) with 
c2 := r(p.. Dimensional analysis shows that c has units of velocity. We could 
absorb this constant into a redefinition of time units, but we prefer here to 
leave it appearing explicitly in the ensuing developments. 

The boundary conditions which describe a string of length L with fixed 
endpoints are 

/(0, t) = 0, f(L, t) = 0 for all t. (5.17) 

5.2.2. Eigenfunctions of the Laplacian 

Since this chapter deals with applications of Fourier series, we can 
expect that the use of this series will solve the problem posed by (5.15)-(5.17). 
In fact it does: if we follow the approach used in Section 5.1, we will find 
that the partial differential wave equation is reduced to a set of ordinary 
(second-order) differential equations. We would like to present here a line 

-Tf 

Fig. 5.2. Elongation and tension of an 
elastic string element. 
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of reasoning which is somewhat different and which, although leading to the 
same results, will generalize more easily to the solution of the systems posed 
in Chapter 6, where the boundary conditions are those of a two-dimensional 
rectangular, circular, annular, or sectorial membrane. 

It is readily verified that in the Hilbert space of functions .? 0 2(0, L) 
with the inner product (4.134c) on (0, L) and boundary conditions (5.17), the 
operator ·v:p is hermitian. For twice-differentiable g, f, integrating by parts, 

IL 02j(x) 
(g, V2f)~ = 

0 
dxg(x)* 8X2 

= g(x)* of(x) IL - fL dx[og(x)] * of(x) 
ox 0 0 ox ox 

= {g(x)* of(x) - [og(x)] *f(x)} IL + fL dx[o2g(x)] *f(x) 
ox ox 0 0 ox2 

= 0 + (V2g, rn. (5.18) 

Moreover, 'o/' 2 can be shown to be self-adjoint. The set of all its eigenvectors 

(5.19) 

will constitute a complete orthogonal basis for that space (Section 4.7). 
The solutions of the differential equation (5.19) have the general form 

a sin[(- t\) 112x] + b cos[(- t\) 112x], a, b, ,\ E ~. (5.20) 

If we impose the boundary conditions (5.17) at x = 0, we obtain the restric
tion b = 0, while the condition at x = L requires (- t\) 112L = 0 mod rr, i.e., 
(- ,\)112L = nrr, n E !?l', or ,\ = - (nrrfLY The eigenfunctions of 'o/' 2 are thus 
sin(nrrx/L) in .? 0 2(0, L), and we can use n to label the eigenfunctions. The 
values +In I and -In I yield the same function, while for n = 0 we obtain 
the zero function. Hence we let n = I, 2, 3, .... The constant a in (5.20) may 
depend on n and t, so we let a = an(t). 

We can thus expand any functionf(x, t) E 2"0 2(0, L) satisfying (5.15) in 
terms of eigenfunctions of "P with these boundary conditions as 

f(x, t) = (2fL) 112 2 an(t) sin(nrrxfL), (5.2la) 
ne,2"+ 

introducing the constant (2/L)112 in order to match exactly Eqs. (4.134). 
These allow us to solve for the an(t): 

an(t) = (2/L)112 f dxf(x, t) sin(nrrxfL) = fn°(t). (5.2Ib) 

Equations (5.21) do not yet describe solutions of the wave equation (5.15); 
they are only an expansion tailored for this equation plus boundary condi-
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tions. Now, upon requiring that (5.2la) be a solution to (5.15), we find a set 
of uncoupled ordinary differential equations for an(t) to satisfy, viz., 

0 = (c- 2 ~22- 'V2)f(x, t) 

(5.22) 

Linear independence of the eigenvectors of V2 now implies that each of the 
coefficients of the series (5.22) is zero. The fn°(t) are thus determined up to 
two arbitrary constants, which we write, introducing for later use an "initial 
time" t 0 , as 

wn := mrc(L, 

bn, Cn E ~. (5.23a) 

(5.23b) 

5.2.3. Initial Conditions and Green's Function 

The series (5.2la) with coefficients (5.23) is the most general solution of 
the problem. It remains now to fix the constants bn and en in terms of 
boundary conditions in time. Any pair of initial conditions on f(x, t) or its 
time derivatives for fixed t will be suitable. The most common pair is the 
initial elongationf(x, t0 ) and velocity j(x, t0 ) for t0 • By (5.21 b) and (5.23) this 
determines the bn and en in terms of the sine Fourier coefficients of the two 
initial conditions. We find 

(5.24) 

so that upon substitution of (5.24) into (5.23) and (5.23) into (5.2la), the 
solution can be expressed as 

f(x, t) = (2/L)112 2 w; 1 sin[wn(t - 10)] sin(nTTxjL)/n°(t0 ) 

nez+ 

+ (2/L)112 2 cos[wn(t - t0)] sin(nTTxjL)fn°(t0) 

nez+ 

=: 2 Gn°(X, I - to)/n°(to) + 2 Gn°(X, I - to)fn°(to) 
nez+ nez+ 

= (lf -xG(t - to), f(to))L0 + (lf -xG(t - to), f(to))L0 

= r dx'G(x - x', t - to)/(x', t 0) + r dx'G(x - x', t - t0)f(x', t0). 

(5.25) 

The last two equalities deserve comment. The second term in (5.25) contains 
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two sums, each of which gives rise to an inner product (4.134c). The first one 

involves f(t0) with a vector with sine Fourier components 

Gn°(x, t- t0) := (2/L)112w;; 1 sin[wn(t- t0)] sin(nTTxjL) 

= (lr -xR[2c(t-tol,l/2cl)no = Gno(x, t- to)*. (5.26a) 

We recognize in the expression (5.26a) the sine Fourier coefficients of the 

rectangle function of width 2c(t .- t0), height l/2c, and centered at x as 

obtained in Eq. (4.135). [Recall the remark about the negative "phantom" 

function in (-L, 0).] The second sum in (5.25) involves the time derivative 

of (5.26a), 

Gn°(t - t0) = (2fL)1 12 cos[wn(t - t0)] sin(nTTxjL) 

= -!(lf x+c(t-t0 )1) + lf x-c(t-to)li)n°, (5.26b) 

which we recognize as the coefficients of two a's sitting at x + ct and x - ct. 

The last equality in (5.25) expresses the convolution of the vector f(t0), 

represented by the function /(x', t0), initial velocity, and (5.26a), which is 

the Green's function for the system at hand, 

G(x - x', T) = R<2c'· 112cl(x - x'), (5.27a) 

and that of the initial conditionf(x', t0) and (5.26b), 

G(x- x', T) = 1-[3(x' - (x + CT)) + a(x' - (x- CT))], (5.27b) 

integrated over x'. 

5.2.4. Fundamental Solutions 

To bring out the meaning and properties of Green's function we shall 

consider the fundamental solutions below. [Compare these results with those 

in Section 2.3.] Assume that initially the string starts from rest with a a-like 

"shape" at some point x0 , i.e., /(x', t 0) = 0, f(x', t 0 ) = a(x' - x0). The 

ensuing development of the string shape is then G(x - x 0 , t - t0 ). Equation 

(5.27b) tells US that the a-pulse splits into two pulses traveling along X = 
Xo ± c(t - to), i.e., they keep their a-shape at all times and propagate With 

velocity ±c. Such a pulse is shown in Fig. 5.3(a). Assume next that the string 

starts from zero elongation, f(x, t0) = 0, but with a a-pulse in velocity at 

some x 0 , f(x, t0) = o(x - x0), as if impelled by a sharp, localized blow. The 

string shape will then develop as G(x - x 0 , t - t0 ), shown in Fig. 5.3(b); 

it is a rectangle function which broadens with velocity c. The most general 

solution with initial conditions given by f(x, t0 ) and /(x, t0 ) will be an inte

gral-a generalized linear combination-of these fundamental solutions. 

Exercise 5.9. Verify that (5.27b) is the time derivative of (5.27a). You can 
write R<2ct,ll(x) = G(ct - x)G(ct + x), where 8 is the Heaviside step function 
[G(y) = 1 for y > 0, 8(0) = !-, G(y) = 0 otherwise for yE(O,L)], and use the 
fact that the derivative of a discontinuous function is a Dirac 3. 
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We recognize the following properties of the Green's function, which 
hold for the lattice of Section 2.2 or the diffusive systems in Section 5.1 : 
(a) reciprocity, (b) translational, and (c) inversion invariance. In addition, 
the system exhibits (d) causality: a disturbance at (x0 , t0) can affect only those 
points x at future times t which are inside the cone lx - x 0 l ~ cit- tol· 
Both the Green's function and its derivative are zero outside this region. 

Exercise 5.10. Let the string elongation at time t depend on conditions at 
time h and these in turn on still earlier initial conditions at time t0 • Express this 
transitive property in terms of an integral relation between the Green's function 
and its derivative for times t, t1 , and t0 • Refer to Exercises 2.13 and 5.2 and ahead 
to Exercise 5.17. 

5.2.5. Traveling Waves and Reflection Phenomena 

As Figs. 5.3(a) and (b) suggest, something rather dramatic happens 
when the disturbance traveling with velocity ± c hits the endpoints of the 
string. These are kept fixed, and the pulse undergoes a reflection, propagating 
backwards after the collision. Rather than unearth this phenomenon from the 
Green's function, we can show rather easily what the mechanism is. For this 
it is sufficient to note that if g~(y) and g-(y) are two arbitrary functions, 

f(x, t) = g~(x - ct) + g-(x + ct) (5.28) 

will be a solution of the wave equation (5.15). In fact, the most general 
solution can be built in this way: a right-moving disturbance plus a left
moving one. The boundary conditions (5.17) impose g~( -ct) = - g-(ct) 
and g~(L - ct) = - g-(L + ct), which can be combined as 

' , ' , 
'',,, ,,/ 

' , ' , 
>~ , ' , ' , ' 

-8,12 ,' ', -8/2 , ' , ' , ' , ' 

0 
a b 

(5.29) 

Fig. 5.3. The Green's function 
and its time derivative 
for an elastic string of 
fixed endpoints stretch
ing between 0 and L. 
(a) G(x - L/2, t), (b) 
G(x - L/2, t). The first 
consists of traveling 
Dirac .S's, while the 
second has values 0, 
+1, and - 1 in the 
regions shown. 
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Fig. 5.4. A "lone" traveling pulse in a 
string undergoing reflection at the 
endpoints (heavy lines). It is 
mathematically accompanied by 
mirror pulses beyond the string 
ends 0, L. Reflection thus appears 
as the entrance of a" mirror" pulse 
in the "real" string. 
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This means that the right-moving disturbance must be equal to the negative 
of the inverted left-moving disturbance, and both must be periodic with 
period 2L. Any string movement will be a superposition of two such opposing 
traveling waves. A pulse moving "alone" along the string (Fig. 5.4) is mathe
matically accompanied by an infinity of companion pulses spaced by 2L 
moving in the same direction and by a second infinity of negative mirror 
pulses traveling in the opposite direction. When the pulse "hits" the wall, it 
superimposes with its mirror counterpart. As the pulse proceeds into the 
mirror region, the mirror pulse becomes real and travels through the string. 
Reflection has taken place. In Fig. 5.5 we show in detail the reflection process 
undergone by a moving square pulse. 

Exercise 5.11. Show that the above description of companion and mirror 
images of any string shape is contained in the Green's function formalism from 
Eq. (5.25) onward. Note that Eq. (5.25) can be rewritten as 

f(x, t) = (2£)- 112 [ 2 (/n°Sn + - /n°W;; 1cn +) - 2 (/n°Sn-
ne££+ ne.!Z"+ 

/n° = /n°(to}, /n° = /n°(to), 

- /n °Wn- Cn-)] , 

(5.30a) 

(5.30b) 

Sn"' := sin{mr[c(t - t0 ) ± x]/L}, Cn"' := cos{mr[c(t - t0 ) ± x]/L}. 
(5.30c) 

Note that for t = t0 this is the sine and cosine Fourier series for functions of 
period 2L and that as x+--+-x, s++--+s- and c+~c-; hencef(-x,t)= 
-f(x, t). 
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Fig. 5.5. Reflection of a square pulse at a 
string endpoint. Either half of the 
figure may represent the "real" 
string; the other will represent its 
image. 

Fig. 5.6. String which starts from rest 
with a triangle shape. 

Exercise 5.12. Explain the development of a string shape which starts from 
rest in terms of superpositions of right- and left-traveling waves. You can guide 
yourself with Fig. 5.3(a). Do the same with a string the shape of that in Fig. 5.3(b). 

Exercise 5.13. Consider a string which starts from rest with a triangular 
shape as in Fig. 5.6 as a superposition of right- and left-traveling shapes. Show 
that the string motion is indeed the·one depicted in the figure. At what time does 
the string recover its initial shape? Did such a" fundamental period" exist for the 
finite lattice (Chapter 2)? 

5.2.6. Normal Modes 

The description of the fundamental solutions following Eq. (5.25) was 
made assuming that the initial displacements and velocities were Dirac S's. 
As in Section 2.3, we can now investigate the string motion when the initial 
conditions are given by the V2 eigenvectors, (2/L)1' 2 sin(mrxfL), n E q>+, in 
2o2(0, L). The solutions thus obtained are the normal modes of the string and 
can be read from the second member of (5.25), letting thefn°(t0) and/n°(t0) 

be different from zero one at a time. Setting t0 = 0 for simplicity, we define 

Pn(x, t) := (2/L)112 sin(n1rx/L) cos wnt, 

cpn(X, t) := (2/L)112 sin(n1rx/L)w;; 1 sin wnt, 

wn := n1rc/L (5.3la) 

n E q>+. (5.3lb) 
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The most general solution to the string problem is a linear combination of 
these, as (5.25) can be rewritten in the form 

f(x, t) = 2: fn°¢n(x, t) + 2: /n°CfJn(X, t). (5.32) 
ne,2"+ ne,2'"+ 

[Note the perfect analogy with (2.48) and (2.50).] A few normal modes (5.31a) 
have been drawn in Fig. 5.7. Some of their relevant properties are the follow
ing: (a) The ¢n(x, t) represent waveforms which start from rest and maximum 
elongation, while the rn(x, t) start from the equilibrium shape with maximum 
velocity. (b) The nth normal mode presents n - 1 nodes (i.e., zeros) within 
the interval (0, L), not counting the endpoints. (c) They oscillate with angular 
velocities wn. Eq. (5.23b), which are discrete and directly proportional to n. 

[In terms of the finite lattice Brillouin diagram of Section 2.3, they are all in 
the "linear" (low-frequency) region, where sin z ~ z.] (d) The period of 
oscillation of the nth fundamental mode is 

Tn = 2Trfwn = 2Ljnc = T0/n, To:= 2Lfc (5.33) 

and is a submultiple of the fundamental period T0 • The original form of any 

string disturbance is thus reproduced after a time T0 , the nth component 
mode having completed n full oscillations. See again Fig. 5.6. (e) Each normal 
mode is a sinusoidal string shape modulated by an oscillating function of 
time: they are the separated solutions of the wave equation [i.e., of the form 
Xn(x)rn(t)]. In fact, we would have found precisely these had we set out 
proposing separated solutions for this equation, the separation constant 
being proportional to n2 . (f) The odd-n modes are even under inversions 

Fig. 5.7. The first four normal modes for 
a vibrating string that starts 
from rest [Eq. (5.3la) for n = 

1, 2, 3, and 4]. 
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through the string midpoint x = L/2. Even-n modes are odd. (g) Under time 
inversion, the <Pn(x, t) are even, while the fPn(x, t) are odd. 

Exercise 5.14. Analyze the string motion in Fig. 5.6 in terms of the consti
tuent normal modes. Show that only the odd modes appear. This can be predicted 
on the basis of the symmetry of the initial conditions with respect to the string 
midpoint. 

Exercise 5.15. Analyze the translation and inversion symmetries of Fig. 
5.6: (a) periodicity in time under translations To and T0 /2, and in space under 
translations by Land 2L; (b) inversions in time through t = 0, T0 /4 ,and T0 /2, 
and in space through x = 0, L/4, and L/2. 

5.2.7. Two-Component First-Order Differential Form of the Wave Equation 

The solutions of the wave equation on the finite string can also be 
expressed in terms of hyperdifferential operators acting on the initial condi
tions. This follows a similar treatment of the diffusion problem in Eq. (5.13) 
but with the introduction of a space of velocity functions j(x, t) in addition 
to the functionsf(x, t) which describe the string elongation. [This is analogous 
to the phase space in Section 2.6.] We consider f and t as the components of 
a two-vector ~(x, t) so that the wave equation (5.15) appears as a two
component equation: 

a 
IHI~(x, t) = ot ~(x, t), (5.34a) 

( f(x, t))' 
~(x, t) := j(x, t) ' !)· (5.34b) 

The first component of (5.34a) states that /(x, t) = of(x, t)fot, while the 
second component rewrites (5.15) in terms ofjandj 

5.2.8. Hyperdifferential Form of the Evolution Operator 

Following step by step the formal development (2.108)-(2.113) (with 
M--+ I, k--+ c2 , /!:,.--+ 9'2), we can expand the time development of the 
elongation and velocity functions as 

~(x, t) = expl(t- to) a~,j~(x, t')/t'=to 

= exp[(t - t0)1Hl]~(x, t0) 

= { G ~) cosh[c(t- t0)VJ 

+ c2~2 ~)(cV)- 1 sinh[c(t- t0)V]}~(x, t0) 

=: IG(t - t0)~(x, to). (5.35) 
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(Note that only positive powers of V actually appear in this equation.) This 
defines Green's (i.e., the time-evolution) operator for the wave equation. 
Note that the operator entries of the 2 x 2 matrix G(t - t0) involve only 
even powers of V, so that the symmetry properties of f(x, t) and j(x, t) 
under inversions or translations in x are not affected [Eq. (4.121)]. Hence the 
boundary conditions (5.17) for the string of length L are unchanged, as we 
should expect, under time evolution. 

For f(x, t), the first component, Eq. (5.35) tells us that 

f(x, t) = {(cV)- 1 sinh[c(t- t0)V]}j(x, t0) 

+ cosh[c(t - t0)V]f(x, t0), (5.36) 

while the second component is only the time derivative of this. Comparison 
of the hyperdifferential form (5.36) with the corresponding integral kernel 
form (5.25) of the time-evolution operator implies the (weak) equivalence 

cosh(rV)f(x) = -t[f(x + r) + f(x- r)]. (5.37) 

This is obvious by now due to (4.124) and cosh z = (ez + e-z)/2. The second 
equivalence implied is 

v- 1 sinh(rV)f(x) = -! r_~· dx'j(x'), 

which is the antiderivative in r of the first. 

(5.38) 

Exercise 5.16. Verify (5.38) in more detail (a) in comparison with (5.25)
(5.27a), (b) as the antiderivative in r of (5.37), and (c) as the antiderivative in x 
of sinh rV' using sinh z = (e 2 - e- 2 )/2. Note that due to the absence of ann = 0 
mode in the string, V' -I exists as an operator on the space of vibrating string 
solutions. Compare this to the Lanczos smoothing (4.62). 

Exercise 5.17. Verify the composition of the time-translation operators 

G(t - t1)G(tl - to) = G(t - t0 ) (5.39) 

(a) formally as the exponential of IHI, (b) as the 2 x 2 matrix with operator entries 
involving hyperbolic functions of V', (c) by the matrix representatives of G in the 
Fourier basis [Eqs. (5.26)], and (d) by the integral kernels (5.27). Recall Exercise 
5.10. 

5.2.9. Kinetic and Potential Energy in the Vibrating String 

The last aspect we want to present of the vibrating string system is that 
of the energy present in the motion. This bears considerable resemblance to 
the energy in a vibrating finite lattice (Section 2.5) and some differences as 
well. In deriving the relation between f(x, t) and the energy, we deal again 
with string elements L\x and then let L\x--'>- 0 and integrate over x. All 
quantities describing observables are assumed real. 
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The kinetic energy of the string element is one-half the mass f-1-!lx 
multiplied by the square of the velocity /(x, t). The whole string therefore has 
kinetic energy 

Ek(t) := 11-'- {L dxl/(x, t)l2 
= tP-(f(t), f(t)n 

= 1fl- 2 Wn21w~-l COS(wnt)fno - Sin(wnt)fnol2· 
ne2'+ 

(5.40) 

In the second step we have used the inner product ( 4.134c) and in the third 
the corresponding Parseval identity, the sine Fourier coefficients being given 
by the time derivative of (5.25). For simplicity we have set t0 = OJno := fn°(0) 
andfno := fno(O). 

The potential energy of the same string element is found by multiplying 
the net force acting on it, - c2'Pf(x, t), times the position af(x, t) integrated 
from a = 0 (equilibrium) to a = I (actual position), 

P(t) := -f-1-C f dxf(x, t)V2f(x, t) fa da 

= -!P-c2(f(t), 'Y'2f(t))Z 

= 1P-c2 2 (mr/L)2iw; 1 sin(wnt)fno + cos(wnt)fn°l 2, (5.41) 
ne2'+ 

where we have followed steps analogous to the derivation of (5.40). 

5.2.10. Total and Partial Energy Conservation 

The total energy in the string can be found after some algebra as 

E := £k(t) + EP(t) = (fl-C27T2j2V) 2 n2(if,;'\2 + w;2i/,;>i2) =: 2 En. 
ne.2"+ neEt'+ 

(5.42) 

The end result is only a function of the initial condition coefficients, and 
hence E is a constant of motion. Note in particular that the partial energies 
corresponding to the constituent normal modes [the sum of one term in (5.40) 
and the same-n term in (5.41)], denoted by En in (5.42), are separately con
served as well. Thus there is no energy exchange between the normal modes. 
(All these features have their exact counterpart in the finite lattice whose 
energy characteristics occupies Section 2.5.) 

An interesting point to notice is the factor n2 inside the sum in (5.42). 
If the total energy is to be finite, fn o has to decrease faster than n- 312 with 
growing n (while fn o only faster than n - 112). This means that if f(x, 0) has a 
discontinuity, the total energy of the string is unbounded. This is due to the 
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fact that the normal mode energies are proportional to n2 , turning a con

verging partial-wave sum into a diverging energy sum. Discontinuities in 

velocity are allowed, however, as they produce only trapezoid-like string 

shapes. 

Exercise 5.18. Follow Section 2.5 in showing that the normal mode and 

total energies are constant without the explicit calculation undertaken in (5.40)

(5.42). 

Exercise 5.19. Follow Section 2.6 in finding other constants of motion for 

the vibrating string. 

Exercise 5.20. Pick up the idea mentioned in Exercise 2.61 of defining a 

sesquilinear inner product in the string elongation-velocity space (5.34): 

(5.43) 

As the spectrum of 'V 2 is strictly negative, the inner product (5.43) is positive. With 

respect to this product, the operator in (5.34b) is self-adjoint, and the time
evolution operator IG in (5.35) is unitary. 

Exercise 5.21. Consider the string to be immersed in a viscous fluid so that 

a velocity-dependent damping term is present. The governing equation is then 

82 0 
c- 2 812 /(x, t) + r 8tf(x, t) = ''Pf(x, t). (5.44) 

In finding the solutions of this equation with the boundary conditions (5.17), 

note that the V' 2-eigenfunction methods developed in this section apply with the 

difference that the angular frequencies (5.23b) will have a constant imaginary 

part, damping the oscillation, and a real part that is an "effective" oscillation 

frequency. The tools for this analysis have been given in Section 2.1. Lower 

frequencies become overdamped, while higher ones remain oscillatory. They are 

no longer multiples of a fundamental frequency, and hence the medium becomes 

dispersive, i.e., signals lose their shape during propagation as long waves lag 

behind short ones. This provides a rough model for the propagation of electro
magnetic waves in an ionized medium. 

Exercise 5.22. The boundary conditions (5.17) could be done away with as 
in analyzing a vibrating metal ring. The V' 2 eigenfunctions are then exp(imrx/L), 

n E fZ; the different approaches to the string can be applied to the ring with little 
conceptual difference. 

Exercise 5.23. Assume the boundary conditions in space are that of(x, t)fox 

be zero at x = 0 and L. Show that the spectrum and eigenvalues of 'V 2 are the 
set of nonnegative integers and that the eigenfunctions are cosines. The relevant 
expansion is thus the cosine Fourier series (4.136). Find the Green's function. 

Describe disturbances in terms of traveling waves: the mirror image disturbance 

is now equal in sign to the "real" one. 
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Exercise 5.24. Let the boundary conditions be "mixed": /(0, t) = 0 and 
of(x, t)foxix=L = 0. The problem is equivalent to that of an ordinary string with 
disturbances which are even with respect to reflections across x = L/2, the "real" 
string extending from zero to L/2. The freedom one has in choosing boundary 
conditions in the eigenvector procedure is that the constant term in the integration 
by parts (5.18) vanishes. 

5.3. The Infinite Lattice 

The study of finite N-point coupled lattices occupied Chapter 2 and was 
solved by the use of finite-dimensional vector space and transform methods. 
Since then, we have let N-+ oo and found Fourier series. In this section we 
shall study the vibrations of a lattice composed of an infinity of discrete 
points: fundamental solutions, normal modes, and traveling waves. They are 
all N-+ oo counterparts of the finite case. An" effective" propagation velocity 
for disturbances will be defined. 

5.3.1. Equations of Motion 

By infinite lattice we mean a system with a countable infinity of masses 
coupled by harmonic oscillator two-body interactions or their electric circuit 
analogues (Fig. 2.5). The equations governing such systems were found in 
Section 2.2. In the simple lattice, i.e., the case when all masses M and springs k 
are equal, when viscous and external forces are absent and only first-neighbor 
interactions are taken to exist, the governing system of equations for the 
disturbances j,.(t) of the nth mass point is (2.26), i.e., 

MJ,. = k(fn+l - 2Jn + fn-1) =: k(£.f)r,• (5.45) 

The only difference between (5.45) and (2.26) is that here the number N of 
masses is unbounded and n can take any integer value (n E 2l"). We expect 
that the coupled set of equations (5.45) will uncouple if we consider Un}ne.2' 
to be the Fourier coefficients of a functionf(x) and perform Fourier synthesis 
on (5.45). The second-difference operator £. becomes multiplication by 
-4 sin2 x [see Eqs. (4.72)], turning Eq. (5.45) into 

Mj(x, t) = -4k sin2(x/2)f(x, t). (5.46) 

This is one ordinary differential equation in t for every value of x E ( -TT, 7r]. 
Oncef(x, t) is found as determined by (5.46) with the usual initial conditions, 
thefn's can be found by Fourier analysis (4.17b). The important point is that 
the "original function" and "partial-wave coefficients" are here, respectively, 
Un(t)}ne.2' and {f(x, t)}xe<-n.nl· Their roles are reversed with respect to the 
ones they had in the last two sections. 
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w 

X 

-7l 7l 

Fig. 5.8. Brillouin diagram for the oscillation angular frequencies of an infinite lattice: 
The allowed w's extend from zero to 2(k/ M) 112 and are doubly degenerate for 
all 0 < w < 2(k/ M)112 • 

5.3.2. Solution 

If at time t0 we state that the lattice has elongations and velocities 

{fn(t0),jn(t0)}nEfZ, the solution to (5.46) will be determined, by the usual 
arguments, as 

f(x, t) = f(x, t0 ) cos[w(x)(t - 10 )] + /(x, t0 ) sin[w(x)(t - ! 0 )]/w(x), (5.47a) 

w(x) := 2(k/M)112 Isin(x/2)1 = w(27T- x), (5.47b) 

where f(x, t 0 ) and /(x, t 0 ) arc the Fourier syntheses of the initial conditions. 
These solutions are directly comparable with their finite-lattice counterparts 
(2.28), except for having a continuum of partial waves labeled by x. As x is 
periodic with period 27T, its range and "center" conform to Brillouin's con
vention. The angular frequencies w(x) can be plotted in a Brillouin diagram 
(Fig. 5.8), which is the continuous counterpart of Fig. 2.10. The oscillation 
frequency w(x), note, is not simply proportional to x, as it was for the 
vibrating string. This, we shall see, implies that the medium is dispersive: 
signals lose their shape as they propagate along the lattice. 

5.3.3. Green's Function 

The general solution to the lattice equations (5.45) can now be found as 
the Fourier analysis of (5.47), which is a sum of products of functions. As 
before, its structure will be that of a convolution between the initial conditions 

and the Green's function for the system and its time derivative, the latter ones 
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being the Fourier analyses of the factors sin[w(x)(t - t0)]/w(x) and 
cos[w(x)(t - 10 )] in (5.47), viz., 

fn(t) = L GnmCt - lo)fm(to) + L Gnm(t - lo)jm(to), (5.48a) 
me;z' me;z' 

Gn,m(-r) := (277)- 1 f_", dx[w(x)]- 1 sin[w(x)-r] exp[ -i(n- m)x], (5.48b) 

Gn.m(-r) :== (277)- 1 f_", dx cos[w(xH exp[ -i(n- m)x]. (5.48c) 

We have defined Gn,mC r) using matrix notation, as this leads to the vector 
equation 

f(t) = G(t - t0)f(t0 ) + G(t - t0)f(t0 ), (5.49) 

in complete analogy with the expressions (2.29) for finite lattices, (5.8) for 
heat diffusion, and (5.35) for the vibrating string. It has in common with these 
systems the properties of (a) reciprocity, (b) translational invariance, and 
(c) in variance under inversions, as follows from noting that Gn.mC r) is 
exclusively a function of In - mj, m and n being the sites of cause and effect 
along the lattice. Indeed, as [w(x)]- 1 sin w(x) is an even, real function of x, 
it follows that its Fourier synthesis is an even, real function of the index. As 
we shall see, causality, valid for a continuous medium with a definite propaga
tion velocity, does not strictly hold here. 

5.3.4. "Effective" Propagation Velocity 

We now turn to the explicit calculation of the Green's functions and its 
time derivative, Eqs. (5.48b) and (5.48c). The integral gives rise to a transcen
dental function, Bessel's function, which is studied in Appendix B. The result 
can be written as 

(5.50) 

while Gn,mC -r) itself can be written as the r-integral of (5.50) and explicitly 
computed by its Taylor series. In Fig. 5.9 we have plotted (5.50) for n = 0, 
integer m, and -r in a positive range. A lattice which starts from rest (f = 0) 
with one mass out of line with unit elongation will progress in time as shown 
in the figure. The disturbance propagates symmetrically on both sides of the 
initial elongated mass point as 12k(z) = J _2iz) for k E :?Z. (Fig. 5.9 should 
be compared with Fig. B. I, where real values of the index are plotted.) At 
time -r = 0 Jk(O) = 0 for all k except 10(0) = I, so at t = t0 (5.49) is identi
cally satisfied. Fig. 5.9 can be seen to resemble-in a neighborhood of 
-r = 0-the corresponding Green's function derivative for a finite lattice in 
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Fig. 5.9. The Green's function time derivative Gn,m( 7). This represents the motion of the 
mass points in a lattice which starts from rest with the zeroth mass displaced. 

Time is given in units of (M/4k)- 1' 2 • 

Fig. 2.8(a). The resemblance ends when the finite lattice points antipodal 
to the initial disturbance start to have a significant elongation, as then the 
motion propagates around the finite lattice but extends indefinitely along the 
infinite one. 

It may seem paradoxical that there is actually an infinite propagation 
velocity for signals in the lattice. For small z, J21,(z) c::: (z/2)2 k/(2k)! of. 0, as 
can be seen from the Taylor expansion in (B.7). Hence every mass point in 
the lattice feels the disturbance instantaneously. A "physical" lattice of 
masses joined by springs, of course, does exhibit a finite propagation velocity 
due to the necessarily massive springs. The nature of the Bessel function, 
however, allows for a working definition of a propagation velocity. As Fig. 5.9 
suggests, at points far from the disturbance focus, the elongation increases 
slowly up to a point where it starts osciilating. This change of response 
happens at a time given approximately by the first zero of the Bessel function. 
In Chapter 6, Fig. 6.6, we have plotted the zeros of the Bessel function. 
For large orders it can be shown [e.g., Watson (1922, Section 15-81) and 
Abramowitz and Stegun (1964, Eq. 9.5.14 and the references therein)] that 
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the first root of Jk(x) has the asymptotic value k + 1.8557571kl'3 + 
1.033150k- 113 + · · ·, k-+ oo. A given mass point at n units on either side of 
the disturbance (for n large) crosses this equilibrium point at a time T = 
n(k/M)- 112, as given by (5.50) and defines thus an "effective" propagation 
velocity of (k/M)1' 2 in units of interparticle separation per unit time. [A 
different justification of this estimate and the treatment of dispersion is given 
by Weinstock (1970), Merchant and Brill (1973), and Jones (1974).] 

Exercise 5.25. Consider pth-neighbor interactions through spring constants 
kp along the lines of the first part of Section 2.4. Show that the only change in the 
formulas in this section involves the angular frequency w(x), which instead of 
(5.47b) becomes 

[ ~ ]m 
w(x) = 2 k 0/4M + P~ (kp/M) sin2(px/2) , (5.51) 

in complete analogy to (2.64). The Green's function now becomes rather com
plicated to calculate. 

Exercise 5.26. Out of (5.51) we can contrive a lattice where w(x) = ex. This 
will lead to a nondispersive lattice which can be used to propagate signals without 
shape loss. Replacing 2 sin2(a/2) by 1 - cos a, the problem is to find the appro
priate kp's. Cosine Fourier analysis of c2x2 provides the answer. 

5.3.5. Normal Modes 

The normal modes for the infinite lattice can be defined, as before, as the 
time development of the eigenfunctions of the second-difference operator A 
in (5.45) or (5.46). These are the vectors of the Dirac S-basis [recall Eq. 
(4.127)]. If we let the initial conditions be Sy first for the elongation and then 
for the velocity, the corresponding normal mode solutions will be given by 
(5.47) for S(x - y) and Fourier analysis, namely, 

<P~+(t) = (27T)- 112 cos ny cos[w(y)(t- ! 0)], 

<P~-(t) = (27T)- 1' 2 sin ny cos[w(y)(t- t 0)], 

<p~+(t) = (27T)- 1 ' 2 cos ny sin[w(y)(t- ! 0)]/w(y), 

<p~-(t) = (27T)- 1 ' 2 sin ny sin[w(y)(t- ! 0)]/w(y), 

(5.52a) 

(5.52b) 

(5.52c) 

(5.52d) 

where we have taken real and imaginary parts following the nomenclature of 
the finite lattice case (2.48). The only difference, clearly, is that the normal 
modes now form a continuous set labeled by y E ( -1r, 1r]. Equations (5.52) 
represent standing waves of wavelength Ay = 21rjy in units of interparticle 
separation [compare with (2.53)] and oscillation angular frequency w(y). 
The shortest wavelength which can be carried by the lattice happens at the 
edge of the first Brillouin zone, y = 1r, and is .1, = 2 interparticle separa-
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tions. In this mode, two neighboring particles oscillate in opposite directions. 

Beyond the first zone (I y I > 7T) we have no effectively shorter wavelengths 
for the same reason as for the finite lattice in Fig. 2.13. 

Exercise 5.27. Find the normal mode solutions (5.52) proposing separable 

solutions for the equation of motion (5.45), i.e., solutions of the form fn(t) = 
v(n)T(t). 

Exercise 5.28. The initial condition (27T) - 112 exp(- imy) substituted into 
(5.48) should yield the normal mode solutions. Perform this derivation by the 
Bessel generating function Eq. (B4). As only even-order Bessel functions will 
appear in the sum, use G8 (z, t) + Gs(- z, t). The real and imaginary parts of the 
result will match Eqs. (5.52). 

5.3.6. Traveling Waves 

The last family of vibration modes examined for finite lattices were 
traveling waves [Eqs. (2.54)]. Here, they appear as 

cp)(<=(t) = (27T)- 112 sin[ny + w(y)(t - t0)]/w(y), 

rp)(<=(t) = + (27T)- 112 cos[ny + w(y)(t - t0)], 

exhibiting a propagation velocity 

vy<= = ±w(y)fy = ±2(k/M)l12 lsin(y/2)1/Y 

(5.53a) 

(5.53b) 

(5.54) 

in units of interparticle separation per unit time. (See Fig. 2.15.) Again, as for 
finite lattices, the main features are that longer wavelengths have higher 
propagation velocities (in spite of having lower oscillation frequencies; see 
Fig. 2.14 to dispel this apparent paradox). Shorter wavelengths propagate 
slower~hence signal dispersion occurs. The lower limit for velocities is 
2(k/M)112f7T for y = 1r, while the upper one is (k/M)112 for y = 0. Not 
surprisingly, (k/ M)112 was found to be the "effective" propagation velocity 
from the Green's function. The instantaneous response of the whole lattice to 
any localized disturbance stems mathematically from the expansion of a 
localized function in terms of "frozen" traveling waves for t = t0 . Each 
component extends over the whole lattice, and, as time is allowed to flow, the 
sum~initially zero everywhere except at the disturbed site~becomes non
vanishing as the different constituent waves move at their own pace. 

The production of a continuous elastic medium out of a discrete, infinite 
lattice proceeds as in Section 3.4: we view the lattice from an increasing 
distance so that only the correspondingly longer partial waves are significant. 
All of them have, with increasing accuracy, the same propagation velocity, 
as we are in the "linear" region of the Brillouin diagram near y = 0. In the 
limit, we regain the characteristics of causality common to wave phenomena 

in one dimension. 
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Fig. 5.10. Brillouin diagram for the 
oscillation angular frequencies 
of the molecular-diatomic infi
nite lattice with a spring/mass 
ratio of I : 2. 

Exercise 5.29. Consider molecular and diatomic infinite lattices following 
Section 2.4 and the present description. Show that the oscillation frequency 
Brillouin diagram appears as in Fig. 5.10. 

Exercise 5.30. Show in greater detail how Eq. (5.45), for decreasing inter
particle separation, becomes the wave equation of Section 5.2. Would a molecular 
or diatomic lattice behave differently (exhibiting birefringence, for example)? 

Exercise 5.31. Examine the energy in the vibration of a lattice along the 
lines of Section 2.5. There are no significant differences except normal modes 
and traveling waves have infinite energy. 
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6 

Normal Mode Expansion and 
Bessel Series 

The eigenfunctions of the Laplacian operator in function spaces with certain 
sets of boundary conditions constitute orthogonal sets of functions on the 
region enclosed by the boundaries. This is developed in Section 6.1 for 
rectangular boundaries and in Sections 6.2 and 6.3 for circular, sectorial, and 
annular boundaries in the plane. These are a few of the systems which appear 
in physics and engineering, where a great variety of operators and boundaries 
occur. The Laplacian applies mainly to wave and diffusion phenomena, 
which makes it specially relevant. As for boundary value problems, the above 
have been chosen for simplicity and because Fourier and Bessel series appear. 
Bessel series are a family of expansions in terms of orthonormal sets of 
functions which include those of Fourier as a particular case. In Section 6.4 
we give a broad survey of the variants of eigenfunction expansions and some 
references. 

6.1. Eigenfunctions of the Laplacian on Finite Regions: 
Tbe Rectangular Membrane 

Chapter 5 dealt with one-dimensional problems of diffusion and vibra
tion where the key element was the expansion of the solution in series of 
eigenfunctions of the Laplacian with boundary conditions which restricted 
the "physical" space to a region of finite (compact) extent: 2Tr for the con
ducting ring and L for the fixed-end vibrating string. Here we shall see some 
general features of these expansions in inore than one dimension. If the 
boundary conditions are given on certain coordinate lines or surfaces, the 

221 
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solutions can be obtained exactly in terms of known functions. In this section 
we shall refer mostly to Cartesian coordinates, while in the rest of this chapter 
polar coordinates in the plane will be used. 

6.1.1. Vector Spaces of Functions on rJlN 

In working with the space of functions of N variables 

we can endow it with a sesquilinear inner product which is the natural 
extension of the one-variable function space inner product (4.7), namely 

(f, gh := L dNxf(x)*g(x), (6.1) 

where R is a region in N-dimensional space which for simplicity we consider 
to be a connected subset of Euclidean space with finite volume. The set of 
functions with finite norm [i.e., llf II := (f, f)}12 < oo with (6.1) being a 
Lebesgue integral] which vanish on the boundary B of R can be shown to be 
in a Hilbert space. We denote it by 2'02(R). 

6.1.2. TheN-Dimensional Laplacian 

In 2'0 2(R), theN-dimensional Laplace operator 

(6.2) 

is self-adjoint. The weaker condition of hermiticity is easy to prove-without 
reference to Cartesian coordinates-by integration by parts using the Gauss 
theorem for f, g E <;&'<2>, 

(f, V' 2gh = L dNxf(x)*V • Vg(x) 

= £ dN- 1sf(x)*Vg(x)- L dNx[Vf(x)]*·Vg(x) 

= £ dN- 1s·{f(x)*Vg(x) - [Vf(x)]*g(x)} + L dNx[V'2f(x)]*g(x) 

= (V'2f, gh, (6.3) 

where as usual dN-ls is the directed surface element of B. The vanishing of 
the boundary term is due to the restrictionf(x), g(x) = 0 at x E B which has 
been assumed in defining 2'02(R). 
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6.1.3. The Laplacian Eigenbasis 

The hermiticity property (6.3) is sufficient to guarantee that if we find 

the eigenvectors of V2 in 2'0 2(R), 

Y'2cpn(X) = Antfln(X), (6.4) 

their eigenvalues An will be real, and any two eigenvectors corresponding to 

different eigenvalues will be orthogonal. The proof of these facts follows 

(1.1 06). Pending its exact specification, the label n attached to the eigenvectors 

and eigenvalues in (6.4) will be assumed to belong to a denumerable set JV: 

Actually, one can in all cases establish a natural correspondence between JV 

and ~N, N-dimensional vectors n of integer components. The set { c.pn}nEJV can 

then be chosen orthonormal by appropriate normalization. The fact that V2 

has the stronger property of being self-adjoint has the consequence of 

allowing the statement that { c.pn}nE.A'. is not only an orthogonal set but a 

complete basis for 2'0 2(R), i.e., any functionf(x) in this space can be expanded 

as 

f(x) = 2 fntfln(x), 
DE.#" 

with generalized Fourier coefficients 

fn == (c.pm fh = L dNxtpu(x)*f(x), 

and the Parseval identity holds in the form 

(f, g)R = JR' dNxJ(x)*g(x) = 2 fn*gn. 
nE.#" 

(6.5a) 

(6.5b) 

(6.5c) 

Exercise 6.1. Note that the vanishing of the functions on the boundary B of 
the region R is not necessary to guarantee the hermiticity of the Laplacian in (6.3). 
It is only necessary that the surface integral over B vanish. This can be brought 
about if the directional derivatives of the functions involved along the normal to B 
are proportional to the functions themselves, i.e., dN - 1s · Vf(x) = af(x) dN - 1s, 
where a can depend on the points of B where it is taken. We have treated the case 
a = oo. The case a = 0 corresponds to functions whose normal derivative vanishes 
at B. 

The reader can sec that for the one-dimensional case the ordinary sine 

Fourier series (4.134) is described by (6.5) with R = (0, L), B = {0, L}, 

cpn(x) = (2/L)112 sin(mrx/L) and n E ~+. 

6.1.4. Boundary Conditions along Cartesian Coordinates 

Our next example concerns N-dimcnsional space when the region R 

is a hyperprism R0 extending along Cartesian axes xi from 0 to Li, j = 
1,2, ... ,N. 
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In Cartesian coordinates V2 has the form (6.2). It is simplest to solve 
the eigenfunction equation (6.4) by proposing separable solutions of the 
form cp(x) = X1(x1)X2(x2) · · · XN(xN), substituting them into (6.2}-(6.4), 
applying the Leibnitz rule, and dividing by cp(x). We obtain 

(6.6) 

where primes indicate differentiation with respect to the function's argument. 
Every summand X1- 1 x; can depend only on x1 so its transfer to the right
hand side would leave an equality between a function of x1 and a sum of 
functions of all x's but x1• Hence every summand X1- 1 x; can only be a 
constant A1 and An = If= 1 \. The independent eigenfunction equations we 
are left with are x;(x1) = \X;(x1) with the boundary conditions X;(O) = 
0 = X;(L1),j = 1, 2, ... , N. Their solution has been given in Section 5.2, so 
we can write the Pn(x) in (6.4) as 

Pn(x) = (2NfL1L2 · · · LN)112 sin(n11TX1/L1) sin(n21TX2/L2) • • • sin(nN'ITXN/LN) 

(6.7a) 
and label the function by the N-tuple 

n1 E ~+ ,j = 1, 2, ... , N. (6.7b) 

In the solution process we have found A1 = - (n17T/L1)2, so that the eigenvalue 
corresponding to (6.7) is 

N 

An = -7T2 L (n;/Li)2. (6.8) 
i=1 

The spectrum of V2 in 2'0 2(R0 ) with R 0 as described here is then the set of 
all An for n1 E ~+. We note that all values in the spectrum in (6.4) are 
negative. 

6.1.5. Mode Labeling Degeneracy 

It should also be noted, however, that the numerical value of An may not 
label the eigenfunction uniquely. Assume all L/s are equal so R 0 is a hyper
cube. Then clearly any permutation of n/s will yield the same value of An· 
This situation is referred to as degeneracy and has been mentioned before in 
Section 1.7, where we pointed out that in order to resolve the degeneracy and 
provide a unique numerical labeling for the eigenfunctions, hermitian opera
tors commuting with the first one had to be found. In the process of deriving 
(6.7) we have used 82(8xl,j = 1, 2, ... , N, as the Nlabeling operators. They 
are all self-adjoint and obviously commute with each other. Any N - 1 
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linear combinations of these and \72-itself such a linear combination-thus 
provide a commuting set whose common eigenfunctions (6.7) are a complete 
and orthonormal basis for 2'02(R0 ). It is the set of eigenvalues {.\}f=1 which 
labels the eigenbases uniquely. This is equivalent to their specification by the 
N-tuple n = {n1, n2, ... , nN}, n1 E :?Z+. 

6.1.6. The Two-Dimensional Case 

The use which can be made of the eigenfunctions and values of \72 in 
2'2(R) has been shown in Sections 5.1 and 5.2 for the heat and wave equa
tions. Let us now proceed along the same lines briefly to analyze the vibra
tions of a two-dimensional rectangular elastic membrane. The extension to a 
prismoidal three-dimensional cavity or higher-dimensional such systems will 
then be evident. Any function f(x 1, x2, t) on R0 can be expanded in the 
functions (6.7) with coefficients (6.5b) which are time dependent: 

f(x1, X2, t) = (4/LlL2)112 L fn 1 n2(l) sin(n1TTX1/L1) sin(n2TTX2/L2). (6.9) 
n1 n2E~+ 

For the function (6.9) to be a solution of the two-dimensional wave equation, 
its Fourier coefficients must satisfy [as for (5.22)] 

()2 

C- 2 8t2fn1n2(t) = /o.nln,fnln,Ct), (6.10) 

i.e., they are oscillatory functions of time, 

fn 1n2 (t) = bn1n2 sin(wn1n2(t- to)) + Cn1n2 COS(wn1n2(t- to)] (6.11a) 

with angular frequency 

(6.1lb) 

and constants bn1n2 , Cn1n2 which can be fixed by the initial conditions at 
time t0 • 

6.1.7. Nodal Lines, Frequency Lattice, and Accidental Degeneracy in the 

Two-Dimensional Case 

Rather than analyze the Green's function (which will be discussed in 
Chapter 8), we shall point out some features of the normal modes 

¢n1n2(xlo x 2 , t) := ( 4(L1L2)112 sin(nlTTX1(L1) sin(n2TTX2/L2) cos wn1 n2 t 
(6.12) 

and their time antiderivatives 'Pn,n/x1 , x2 , t): (a) They are waveforms which 
start from rest and maximum elongation and from equilibrium and maximum 
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2,1 3,1 4,1 

1,2 2,2 3,2 4,2 

2,3 3,3 4.3 

1,4 2,4 3,4 4,4 

Fig. 6.1. Normal modes nr, n2 of the rectangular membrane and their nodal lines. The 
regions of the membrane with positive elongation have been shaded with a 
finer grid. 

velocity, respectively. (b) The n1o n2 mode presents n1 - 1 and n2 - 1 nodal 
lines in the x1 and x 2 coordinates excluding the boundaries. They are simple
zero lines within the membrane walls, across which the functions change sign 
(Fig. 6.1). The nodal lines are fixed in time. (c) The normal modes oscillate 
with angular frequencies wn1n2 as given by (6.11b) which are discrete and 
whose allowed values form a two-dimensional lattice. See Fig. 6.2. (d) The 
corresponding periods are Tn 1n2 = 2TT/wn1n2 = mTmn,,mn2 • Thus in Fig. 6.2 
the periods of modes lying on straight lines passing through the origin are 
multiples of a fundamental period Tp 1 p2 with p 1 and p2 relatively prime. 
(e) "Accidental" degeneracies can occur whenever L1 and L 2 are commen-
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surable. In Fig. 6.3 are some low-lying degeneracies for a 1 :2 ratio of the 
rectangle sides. As the corresponding modes have the same angular velocity, 
so will any linear combination of them. These give rise to degenerate subspaces 
of modes, the elements of which have fixed nodes which are not straight lines. 
In Fig. 6.4 is a sequence of such linear combinations. Note that the total 
number of nodal lines is conserved. (f) The x-dependent factors of the normal 
modes (6.12) are orthonormal under the inner product 

(6.13) 

Exercise 6.2. Consider a membrane in the form of a narrow annulus of 
radius p and width w. A fair description of the vibration characteristics is to 
assume that the radial functions are those of a string of length w with fixed ends 
and the angular functions are periodic with period 17rp. What is the relevant inner 
product? Is V2 hermitian in such a region? Show that the mode labels would be 
(n, m), n E f!l'+ labeling the radial functions and mE f!l' the angular ones. 

Exercise 6.3. Analyze the modes and oscillation frequency degeneracy of a 
vibrating cubic cavity. Note that there is degeneracy between wn1 n2 n3 and thew's 
with the same permuted indices. Relate this to the fact that the system-differen
tial equation and boundary conditions-is invariant under symmetry transforma
tions of the cube. 

Exercise 6.4. Show that the degeneracies of the oscillation frequency fix 
uniquely the ratios of the sides of the vibrating membrane or cavity. 

n1 

4 • • • • • 

3 • • • • • 

• • • 
w23 

Fig. 6.2. "Reciprocal" lattice of allowed frequency • • • • 
values wn1n2 for a rectangular membrane 
with a length ratio £1:£2 :: I: 2. The dis-
tance from the origin to each of the points n2 
gives the magnitude of wn1n2 • 2 3 4 5 
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The method of separation of variables in finding the eigenfunctions of 
the Laplacian operator in more than one variable will be applied in Section 6.2 
to polar coordinates in the plane. At the end of this chapter we shall add 
some remarks on other coordinate systems in the plane where this is possible. 
In each case, when the region R is finite, the spectrum of V2 is negative and 
the eigenfunctions are orthogonal, giving rise to a corresponding generalized 
Fourier series. 

~-318 
92 --l- ~---~--------712 

91 --~ = = ~= = = = = = =-= = = = = = = = = = = = = = ""~:g 

~-316 
~ ~---~-------- 216 

~ --~ : : : : : :: : : : : : : : : : : : : : :. ~J1 
75 ~- 314 

74 --F--------- 511 

--#----- ('~- = :T~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ = ~ m 
~- 312 

64 -+-
61 ---- 4~2- = = = = L = = =~:::: ::::::::::: IJ~ 

~- 310 
54 ~-------- 111 

4---±-_ --~: : : : : : : : : : : ~ : : ~~~ 
44 -+-

41 ____ 1~ _ = = T:: = = :;::: :: : i : : :: : : ~ : :: ; 
4---------~ 

~---~---------~--~ 
-+- -+-

~ --+-- 14 -F----------F-

--#-

Fig. 6.3. Frequency degeneracies of a rectangular membrane with length ratio I: 2. 
Dashed lines join the degenerate pairs of wn 1.;s. If a partner lies beyond 
n2 = 6, only the n1, n2 values are indicated. 
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0 arctan y3 arctan 3 

n/2+ arctan 1/3 3n/4 n/2 + arctan 3 

Fig. 6.4. Degenerate subs paces of normal modes. The modes (!>3,1 and q>,,a of a 1:2 
rectangular membrane have the same angular frequency (10)112 . We plot here 
the linear combinations q>8 = cos 6q> 31 + sin 6q>16 for various selected values 
of 6 indicated below each figure. Blank and lightly shaded regions indicate 
negative and positive values of q> 8 , the fixed nodal lines being the boundaries. 
Heavily shaded areas indicate values of q>8 larger than 0.6. 

6.2. Laplacian on the Unit Disk: The Circular Membrane 

The eigenfunctions of the Laplacian operator will be found now when 
the domain is the space of square-integrable functions on the unit disk, 
which vanish on its boundary circle. In polar coordinates, we shall see that 
these consist of circular functions for the angular variable times Bessel 
functions for the radial part. The former have been treated extensively in 
Chapter 4 as the basis functions for the Fourier series expansion, while the 
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latter (a summary of whose properties can be found in Appendix B) are a 
basis for one of the Bessel series expansions. The product of the two functions 
provides the spatial part of normal modes for the description of a vibrating 
circular membrane. 

6.2.1. Polar Coordinates 

When the region R in (6.1) is the unit disk R0 , it is convenient to 
parametrize the plane in polar coordinates, 

x1 = r cos</>, x2 = r sin</>, r E [0, oo), </> E ( -7r, 7T], 

d2x = dx1 dx2 = r dr d</>, 

(6.14a) 

(6.14b) 

so that the inner product between two functions on this region can be written 
as 

(f, g)o = f r dr r, d</>f(r, </>)*g(r, </>). (6.15) 

The space of functions with finite norm [induced by (6.15)] which vanish for 
r = 1 will be denoted again as ff0 2(R 0 ). It is a Hilbert space. The functions 
in this space are of course periodic in </> with period 27T. 

The expression for the Laplacian operator in polar coordinates is well 
known to be 

(6.16) 

Exercise 6.5. Verify directly that (6.16) is hermitian. This is just (6.3) in co
ordinate form using (6.15) and f, g E '6'<2>. 

6.2.2. Separation of Variables 

To solve the eigenfunction equation for (6.16) on !f0 2(R 0 ), 

(6.17) 

we propose separable solutions f(r, </>) = R(r)C!!(<f>). We have put a minus 
sign in front of the ,\non the basis of the observation in (6.8) that the spectrum 
of V2 there was negative. By substituting the proposed solution form in (6.17), 
applying the Leibnitz rule, and dividing by r - 2f(r, </>), the equation is 
transformed into 

R"(r) R'(r) C!J"(</>) 
r2 R(r) + r R(r) - ,\r2 = c = - C!J(<f>)' (6.18) 
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As before, the purpose of the separation of variables method is to be able 
to write Eq. (6.17) in a form (6.18) in which one side depends only on one 
variable and the other side only on the other, independent, variable. Both 
sides can only be equal to the same constant c, and we are left with two 
ordinary differential equations coupled by the separation constant. As the 
functions in ..2"0 2(R0 ) are to be periodic in rp, the right-hand side yields the 
well-known circular functions 

mE!!', (6.19) 

fixing the separation constant as c = m 2 and providing one label for the 
Laplacian eigenfunctions. The left-hand side of (6.18) then becomes 

(6.20) 

6.2.3. General Solution of the Radial Part 

Upon the simple change of scale >-.112r ~ r, Eq. (6.20) is Bessel's differen
tial equation. (See Appendix B.) The general solution of (6.20) is then 

(6.21) 

where am and bm are as yet arbitrary constants, m is an integer, and lm and 
Nm are the Bessel and Neumann functions of order m. [These are also called 
Bessel functions of the first and second kind; see the National Bureau of 
Standards tables edited by Abramowitz and Stegun (1964). There, the 
symbol Ym is employed for the latter, for which the name Weber function is 
also occasionally used, as in Watson's classic treatise (1922). In mathematical 
physics, however, Neumann's name seems to be more popular. See Morse 
and Feshbach (1953)]. 

6.2.4. Boundary Conditions and Frequency Quantization 

We now require the space and boundary conditions to hold for Eq. (6.21). 
A first observation (Figs. B.1 and B.2) is that the Neumann function becomes 
infinity at r = 0 and is in fact not square-integrable, so it cannot belong to 
..2"0 2(R0 ) and therefore, unless bm = 0, neither will Rm(r). A second remark 
is that (6.20) is the same equation for +m and -m. No essential features in 
(6.21) distinguish between the two since, for integer m, f_m = (-1)mlm. 
The third argument, we note, is that the boundary condition of the function's 
vanishing at the membrane edge, Rm(l) = 0, fixes the allowed values of >-. 

and thereby the spectrum of the Laplacian. Indeed, this condition implies 
lm(>-.1' 2) = 0. Now, this is clearly valid only if >-.112 is a zero of the Bessel 
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3 
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3 
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[Sec. 6.2 

3 
4 

Fig. 6.5. Radial functions in the circular membrane normal modes q>~ •. The left edge 
is the membrane center, while the right edge is the fixed boundary. All m =I 0 
modes are zero at the former, and all vanish at the latter, coinciding with the 
nth zero of the Bessel function. 

function. The Bessel function of any order m has a denumerable infinity of 
simple zeros. [A small table of the first few is given in Appendix B. A more 
complete list can be found in Abramowitz and Stegun (1964, Table 9.5).] The 
effect of this condition is then to fix 

m E :?l', n E ;?l'+, (6.22) 

where jmn is the nth zero of the Bessel function of order m (not including r = 0). 
The effect of ,\mn when placed in the Bessel function in (6.21) is to change the 
scale in the argument of Rm(r) so that for n = I, 2, ... the nth zero of the 
Bessel function coincides with the region's edge at r = I. This is shown in 
Fig. 6.5. Finally the restriction (6.22) also provides a second label, n, to mark 
uniquely the eigenvalues and functions. The latter are thus recombined from 
(6.19) and (6.21) as 

(6.23a) 
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The constant c;i/n in (6.23a) is introduced in order to normalize the functions 
with respect to the inner product (6.14). It can be shown to be 

·= 2112 [ ldlm(s) I J -l gmn. ds -. 
S-1mn 

(6.23b) 

[see Tolstov (1962, Section 8-13)]. 

6.2.5. Normal Modes on the Disk 

Having found the expressions (6.22) and (6.23), we have completed our 
task of finding and classifying the Laplacian eigenvalues and functions in 

.2'0 2(R0 ). They are a complete and orthonormal set of basis functions in this 
space. Equations (6.5), the generalized Fourier series for .5f0 2(Ro) functions 

on the unit disk, can thus be written using this set. We can now use this in 
order to expand the time-dependent function, 

f(r, </>, t) = 2: fmn(t)g;;i/n(r, </>), (6.24a) 
me,2",ne,2"+ 

which will be required to be a solution of the wave equation describing the 

vibrations of a circular membrane of unit radius fixed along its perimeter. 

As in (6.9)-(6.10), for f(r, </>, t) to be a solution of the wave equation, the 
Fourier coefficients must satisfy 

i]2 
c- 2 iJt2fmn(t) = -l.mnfmn(t), (6.25) 

which are two independent sinusoidal, oscillatory functions of time with 

angular frequency 

(6.26) 

exactly as in (6.11a). 
The normal modes of the circular membrane will thus be the solutions 

for which the Fourier coefficients (6.24b) are different from zero one at a time, 

¢;;/n(r, </>, t) = c;?.nlm(jmnr) exp(imrp) COS w;;{nt (6.27) 

and their time antiderivatives which involve sine functions of w;;{nt. 

6.2.6. Properties of the Disk Normal Modes 

The properties we noted for the rectangular membrane normal nodes 

have their counterparts here: (a) The modes (6.27) start from rest at t = 0, 
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-2 -1 0 2 3 4 5 6 7 8 9 w 
Fig. 6.6. The allowed angular frequencies of the circular membrane normal modes lie 

on the zeros of the Bessel function Jm(x). The latter are indicated by the sloping 
lines corresponding to the first, second, etc., zero. Form integer (vertical lines), 
the position of the zero (heavier bars) gives the value of wmn· 

while their antiderivatives start with maximum velocity. (b) If we consider 
the real or the imaginary part of (6.27), the m, n mode presents m nodal 
diameter lines and n nodal circles, including the boundary. They are simple
zero lines, fixed in time. (c) The angular frequencies (6.26) can be arranged in 
an m-n diagram as in Fig. 6.6, which is the counterpart of Fig. 6.3. They 
appear as points-for integer m-on the zero lines in the (m, x)-plane of the 
Bessel function lm(x). We can see that, quite naturally, the wmn fall into 
trajectories characterized by n. (d) The oscillation periods Tmn = 2TT/wmn are 
all mutually incommensurable, except for Tmn = T -mn· The lack of harmonic 
frequencies accounts for the "nonmusical" sound of a drum as compared 
with a guitar string, where all frequencies are multiples of a basic one. 
(e) The twofold degeneracy of all m # 0 modes is a consequence of the 
invariance of the system-differential equation and boundary conditions
under the group 0(2) of rotations and reflections across any line which passes 
through the origin. Clearly, as one reflection (across a line by 0°) replaces cf> 
by -c/>, the cp;iin(r, cf>) modes are transformed into the cp?.mn(r, cf>) ones. Linear 
combination in these equal-frequency subspaces only rotates the position of 
the angular nodes. 

In Fig. 6.7 we show some of the lower-lying vibrational modes of the 
circular membrane. 
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Exercise 6.6. Assume the initial conditions are invariant under rotations 
[i.e.,/(r, <fo, t0 ) = f(r, <fo+a, to) and similarly for the time derivatives, for arbitrary 
a]. Show that the only normal modes present in such a vibration are the m = 0 
modes and that this invariance will hold for all time. 

Exercise 6.7. Assume the initial conditions of the membrane are eigen
functions of an element of the group 0(2) of rotations and reflections. Find the 
normal modes present in this state. Show that this symmetry will be preserved 
forever. 

Exercise 6.8. Find the Parseval identity for (6.23). 

Exercise 6.9. Consider the region R to be a circular cylinder cavity of unit 
radius and length L. The Laplacian eigenfunctions will then be 

(2/L)1 '2cp~n(r, </J) sin(hrz/L) 

for m e fl' and n, k e fl' +. The system is the "direct product" of a circular 
membrane times a string. The normal mode oscillation angular frequencies will 
be the "Pythagorean sum" of those of the constituent systems, that is, Wmnk: = 
(w;.n + wJc2) 112 in terms of (6.26) and (5.23b). Note that one needs one label for 
each dimension of the space. 

6.2.7. Bessel Series of Integral Order 

The orthogonality and completeness of the normal mode expansion 
(6.24) on the disk, for any fixed time, has one rather immediate consequence 
for functionsf(r, <fo) which are of the formf(r, <fo) = f(r)<Pf?,0(</J) for a fixed m0 

[Eq. (6.19)]. Equation (6.24b), when integration over <:p is performed, will 
yield a factor 27T8m,mo· The generalized Fourier synthesis in (6.24a) will 
contain only an m = m0 term so the <Pf?,0's can be canceled on both sides, 
turning the pair of equations (6.24) into 

f(r) = L f~mgmnlmUmnr ), (6.28a) 
ne.z+ 

J~ .. = gmn f r drf(r)JmUmnr). (6.28b) 

Equations (6.28) are the order-m Bessel series and Bessel partial waves: the 
expansion of an arbitrary £"0 2(0, I) function f(r) into a series of Bessel 
functions of order m and its corresponding order-m Bessel coefficient 
J~m = (27T)- 112Jmn· 

The Bessel series (6.28) is one example, in addition to the Fourier sine 
series, of expansion of an arbitrary function in £"0 2(a, b) in terms of a com
plete and orthogonal set of functions with respect to a given inner product. 
Note that the relevant inner product here is 

(f, g)1 := f1 
r drf(r)*g(r) = L Rm*g~m, (6.28c) 

0 ne.z+ 
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m,n=0,1 1,1 

0,2 1,2 

0,3 1,3 

0,4 1,4 

Fig. 6.7. The normal modes q>;:,n of the circular membrane. For positive values of .the 
function [Eq. (6.27), t = 0] the grid is finer. The fixed radial and angular nodes 

this being the form of the Parseval identity. A trivial change of function 
f(r)--+ r - 112/(r) transforms (6.28) into an expansion of the new f(r) in 
terms of r 112lmUmnr) having the advantage that the integral in (6.28b) and 
(6.28c) contains dr rather than r dr as its differential. 

Exercise 6.10. Verify the orthogonality of the Bessel functions lmUmnr) with 
respect to the index n under the integral (6.28). This can be done by verifying 
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2,1 3,1 

2,2 3,2 

2,3 3,3 

3,4 

of the membrane are the boundaries between the single- and double-gridded regions. 

first that the differential operator on the left-hand side of (6.17), with 82 /8</>2 

replaced by - m2 , is hermitian with respect to the inner product. Then apply the 
argument (1.106). 

Exercise 6.11. Consider thef(r) to be expanded in a Bessel series to be the 
Dirac 8, a- 1 8(r - a), a E (0, 1). This acts as the reproducing kernel in the inner 
product (6.28c). Find its Bessel series coefficients from (6.28b); (6.28a) then gives 
another divergent series representation for the Dirac 8 and its derivatives. 
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6.2.8. Other Boundary Conditions 

The series (6.28) is called, to be precise, the Fourier-Bessel series. The 
roots jmn of the order-m Bessel functions appear in it due to the boundary 
condition that the solution to (6.20) at the membrane edge r = 1 be zero. 
This condition can be replaced by any other condition which ensures that the 
boundary terms in (6.3), namely [f(r)g'(r) - f'(r)g(r)Jir=l> vanish. This is 
achieved if /(1) = 0, as we demanded from (6.21), or by the more general 
condition that the ratio of f(r) to f'(r) at the boundary be constant. In 
particular, if one asks for rf'(r) + kf(r) = 0 at r = 1 to be satisfied by all 
solutions, one finds a normal mode basis of the type (6.23a), where the roots 
Umn}:=l are replaced by the roots P·mn}:=l of rJ~(r) + klm(r), and the series 
analogous to (6.28) will contain these roots. The resulting series has been 
called the Dini series and includes the Fourier-Bessel series as a particular 
case. Watson (1922, Section 18.3) discusses this series in some detail. For 
further examples and physical problems, the reader can refer to Churchill 
(1941), Relton (1946), Courant and Hilbert (1953, Section V-5), Morse and 
Feshbach (1953, Section 11.2), and Tolstov (1962, Chapter 9). 

Tables of Bessel functions and their derivatives, products, and roots are 
necessary for any actual calculation. These tables have proliferated with the 
advent of electronic computation. See, for instance, the Bessel function tables 
of the British Association for the Advancement of Science (1950, 1952), the 
Royal Society Mathematical Tables (1960) (this includes zeros and associated 
values in Part III), and the National Physical Laboratory Mathematical 
Tables (1962). Tables of Bessel functions of large orders have been edited by 
the USSR Academy of Sciences (Fadeeva and Gavurin, 1950) and by the 
Harvard Computation Laboratory (1947-1951). 

6.2.9. The Limit of Infinite Radius: Hankel Transforms 

The expansion of functions f(r) in terms of Bessel series need not be 
constrained to the interval r E (0, 1). A change of variables will allow for any 
interval (0, R), as was done for simple Fourier series in Section 4.7. Let 
q := rR, and introduce the discrete variable Pn := jmn/R for fixed m, so that 
Pn takes on a discrete set of values proportional to the roots of the Bessel 
function, which can be numbered by the natural numbers n. If we further 
introduce/1(q) := (q(R)l'2J(q/R),flH(Pn) := 7T- 112Rfn, and hmn := (7Tjmn)- 112gmn, 
Eqs. (6.28) become 

/1(q) = L hmn(7T(R)jlH(pn)(pnq)1121m(Pnq), (6.29a) 
ne,2'+ 
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(6.29c) 

The limit R ~ oo of Eqs. (6.29) can be found. We have to watch the 
discrete variable Pn := jmnf R. As R ~ oo, higher and higher roots of the 
Bessel function will correspond to finite values of Pn· For large values 
of the argument, the Bessel function lm(z) behaves (see Appendix B) like 
(2/71'z)112 cos[z - 7T(m + 1)/2], i.e., the roots approach asymptotically the 
equally spaced sequence 7T(n + m/2 + i). The values of Pn hence also approach 
equal spacing /:,p := 71'/R, which vanishes as R ~ oo. Finally, the values of 
hmn approach unity. This is seen from (6.23b) and the asymptotic behavior 
of the Bessel function derivative evaluated at the roots. The factor (2/71'z)112 

yields gmn ~ (71'jmn)112 as n ~ oo and thus hmn ~ I. Introducing these con
siderations into (6.29), we observe that sums LP 6p · · · of functions of p 

appear. As R ~ oo these will become Riemann integrals J: dp · · ·, giving, 
finally, 

J(q) = i"' dpfH(p)(pq) 112lm(pq), 

fH(p) = i"' dqj(q)(pq)l 12fm(pq), 

l"' dqf(q)*g(q) = i"' dpfH(p)*gH(p), 

(6.30a) 

(6.30b) 

(6.30c) 

where we have dropped the subscripts. Equation (6.30b) defines the Hankel 

integral transform of f(q) and (6.30a) its inverse, while (6.30c) is the corre
sponding Parseval identity. Although the derivation (6.28)-(6.30) has not 
been rigorous for basically the same reasons as in Section 4. 7, the results 
(6.30) and their range of validity will be established independently in Section 

8.4. 

Exercise 6.12. Consider a similar limit for the Dini series. 

The Bessel-Fourier series in the form (6.28) is but one of a family of 
similar series in Bessel and Neumann functions. These will be discussed in 
Section 6.3. 

6.3. Sectorial and Annular Membranes 

We continue our consideration of the Laplacian operator when the 
functions in its domain vanish on boundaries which follow polar coordinates 
in the plane. These are used for the description of sectorial and annular 
membranes. The results -are nontrivial extensions of the results on the 
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0 Fig. 6.8. Circular sector membrane. 

circular membrane normal modes in Section 6.3 and are meant to illustrate 
the use of the normal mode method in finding explicit results for a variety of 
systems. 

6.3.1. Inner Product on a Sector 

Let the region R -o be a sector of the unit circle extending between the 
lines rp = 0 and rp = ex (Fig. 6.8). The inner product on this region, in polar 
coordinates, will be 

(6.31) 

The space of functions we want to consider is !l'0 2(R-o): square-integrable 
functions under (6.31) which vanish on the boundary of R-o, i.e., f(r, 0) = 
0 = f(r, ex) andf(l, rp) = 0. 

The expression for the Laplacian in polar coordinates is again (6.16), 
and the eigenfunction problem with the same coordinate separation is also 
(6.18). The solutions of the right-hand side of this equation, however, 
because of our new boundary conditions in rp, will be akin to the functions 
for a fixed-end string of length ex, namely, 

<Dm -o(rp) = (2/ex)112 sin Jkrp, J1- := m1rjex, m E:?l' +, (6.32) 

and the separation constant in (6.18) will be c = Jl-2 • 

6.3.2. Solution to the Problem 

The Bessel differential equation, which is the left-hand side of Eq. (6.18), 
is identical to (6.20), except that mE :?l' is replaced by J1- = m1rjex, mE :?Z+. 
This replacement applies also to the solutions, Eq. (6.23), which for R., now 
read 

m, n E :?Z+, (6.33) 
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where all quantities have the same meaning as before, jlln being the nth zero 
of the Bessel function of order J-L. The main difference between (6.33) and 
( 6.23) is that the "angular" label J-L takes on equally spaced but in general 
noninteger values. The set of Laplacian eigenfunctions (6.33) will be ortho
gonal with respect to the inner product (6.31) and complete for .?0 2(R<J). 
A generalized Fourier series can be written for (6.33) identical to (6.24) except 
for the ranges of summation over m and integration over <fo. 

6.3.3. Normal Modes and Frequencies for a Sector Membrane 

An elastic membrane governed by the wave equation over the region R< 
and fixed at its boundary will exhibit normal modes 

(6.34) 

and their time antiderivatives, the oscillation frequencies wlln being c times 
the nth zero of the Bessel function of order J-L. In Fig. 6.9 are these allowed 
angular frequencies for the normal modes of a sectorial membrane of angle 
a = 7Tj3: the allowed J-L'S are positive integer multiples of 3. As the figure 
suggests, the opening of the angle a produces a "sliding down" of the 
allowed frequencies along their trajectories. In particular when a reaches 7T 
we have a half-circular membrane. The allowed values of J-L are the positive 

X 

Fig. 6.9. Allowed angular frequencies of the normal modes of a sectorial membrane of 
angle a = 7T/3. These are given by the zeros of lm(x) for m a nonzero multiple 
of 3. 
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0 2 3 4 5 6 7 8 9 10 
Fig. 6.10. Allowed angular frequencies of the normal modes of an a = rr sectorial 

(semicircular) membrane. 

X 

1 3 5 7 9 11 13 15 17 19 
2222222222 

2 

n=1 

Fig. 6.11. Allowed angular frequencies of the normal modes in a spherical cavity. 
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integers (Fig. 6.10). Except for them = 0 modes, therefore, the sounds one 
can produce on a circular drum are identical to those one can get from a 
half-drum. The mechanics of actual drumming, however, tend to generate 
mostly m = 0 normal modes. These are the only circular membrane modes 
where the center is in motion. 

Exercise 6.13. Extend the sector angle a to 27T. You have then a circular 
membrane with a fixed strut extending to the center. The allowed angular frequen
cies will include w 112 ,n = cn'TT, capable of producing harmonic sounds. (See the 
particular function 1112 in Appendix B.) Describe the corresponding normal modes. 

Exercise 6.14. Provided you are familiar with spherical harmonics, solve the 
wave equation for a resonating spherical cavity. Show that the allowed angular 
frequencies are only half-integers, as given by Fig. 6.11. These are the allowed 
w's for Exercise 6.13, minus integers. 

6.3.4. Bessel Series for Real Order 

As in Section 6.2, in considering the generalized Fourier expansion of 
functions in f£0 2(R<J) in series of <P~n(r, <?),we can consider those which have 
the form f(r )<Dm <J(c/>) so that <P integration and cancellation can be made. 
This gives rise to the pair of Bessel series equations (6.28) for general real 
order m. 

Exercise 6.15. Prove this in detail. 

Exercise 6.16. Show that for m = ~ the Bessel series (6.28) becomes the 
Fourier sine series. 

6.3.5. Annular Boundary Conditions and Solutions 

Consider now a region R 0 which is an annulus of interior and exterior 
radii p1 and p2 (Fig. 6.12). The relevant inner product is then 

(f, g)o = r2 r dr f_"" dcpf(r, cp)*g(r, cp), (6.35) 

defining a space f£0 2(R0 ) in analogy with the former cases. The search for 
the eigenfunctions of V2 in this space follows that of Section 6.2; the angular 
functions are here periodic and identical to (6.19), while the radial functions 
have the form (6.21). The boundary conditions on the latter are different, 
however: 

Rm(Pl) = amlm()..l'2Pl) + bmNm(l\112 pl) = 0, 

Rm(P2) = amlm(I\112P2) + bmNm("A112P2) = 0. 

(6.36a) 

(6.36b) 
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Fig. 6.12. Annular membrane. 

This set of homogeneous equations will have a solution for the ratio bmfam 
only if their determinant vanishes, i.e., for those values of k := >.112 for which 

(6.37) 

6.3.6. Frequencies and Normal Modes for an Annular Membrane 

The problem, then, is to find the zeros of the function D~102(k), which 
can be shown to be simple. This is not too difficult with standard numerical 
computer methods. See Fig. 6.13. Once these are found as kml> k m2 , •• • , 

kmn• ... , they can be introduced in (6.36) and the ratios Pmn := bmfam thereby 
determined for the nth zero of (6.37). The radial functions will then be 

mE ?l', n Eft+. (6.38) 

The normalization coefficient Cmn is chosen so that 

(6.39) 

Bessel and Neumann functions are real, so no complex conjugation is 
necessary. 

Exercise 6.17. Verify the orthogonality (6.39) of the Bmn(r) with respect to 
the index n. This can be done as in Exercise 6.10. 

Once the radial functions (6.38) have been found, the rest of the program 
follows as before: The eigenfunctions of V'2 on the annulus R0 are 
<p~n(r, cp) := Bmn(r)<DmO(cfo) and constitute a complete and orthonormal set of 
functions on 2'0 2(R0 ) [compare with (6.23) and (6.33)], giving rise to a 
generalized Fourier series on R0 . Normal modes for the annular membrane 
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can be built as the <p~n(r, c/>) times oscillating functions of time, of angular 

frequency wmn = ckmn determined by the roots of (6.37). These can be plotted 

as in Fig. 6.6. In fact, Fig. 6.13, seen sidewise, is just such a diagram. 

Exercise 6.18. Verify and explain the twofold degeneracy of Wmn and 
W-mn• 

Exercise 6.19. Investigate the case when the interior radius of the annulus, 
p1 , becomes zero. Show that, as Nm(p)--+ ± oo for p--+ 0, Pmn--+ 0 in (6.38). The 
annular normal modes thus become the circular ones, except for the m = 0 
ones. Why are these absent? 

Exercise 6.20. Consider an annular-sectorial membrane bounded between 
r = p1 and p2, c/> = 0 and o:. 

o.o.2l 
- I I 

-0.2 

Fig. 6.13. The function D~1 " 2(k) in Eq. (6.37) form = 0, 1, ... , 5. We draw three curves: 

long dashes for p, = 0.25, pz = I; continuous for p1 = 0.5, p2 = I, indi
cating the zeros by arrows; and short dashes for p1 = 0.75, p2 = I. The zeros 

of the last function can be seen to lie at higher values of the argument and to 

tend toward equal spacing. 
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6.3. 7. Bessel Series with the Annular Functions 

The radial functions Bmn(r) we have found for the annulus also provide 
an orthonormal (and complete) basis for the space of square-integrable 
functions on the interval (p1 , p2). In fact, by arguments parallel to those 
which lead from the generalized Fourier expansions on R 0 and R., to the 
Bessel series in Eq. (6.28), we are led to the general Bessel series of order m, 

f(r) = L f,fmBmn(r), 
ne;t'+ 

(6.40a) 

f,fm = r2 r drf(r)Bmn(r), 
ill 

(6.40b) 

(f, g)s = Jil
2 r drf(r)*g(r) = L J,fm*g~m, 

il1 ne;t' + 

(6.40c) 

which, as suggested by Exercise 6.20, is valid for real m. 
The use of cylindrical functions for the series expansion of functions 

is not restricted to those types seen here, which arose out of the normal mode 
expansion in regions of the plane bounded by polar-coordinate boundaries. 
Among these "other" series expansions we should mention the Neumann 
series, which are of the form L,;'=o anlv+n(r); the Kapteyn series, of the form 
L,;'=o bnlv+n[(v + n)r]; and the Schlomlich series, of the form L,;'=o cnlv(nr). 
The region of convergence of the two first series is determined by the analytic 
properties of the functions to be expanded. In this sense, they are similar to 
the ordinary Taylor expansions. We shall not elaborate on these but refer the 
interested reader to Watson's treatise (1922, Chapters XVI, XVII, and XIX) 
for further details and applications. Neumann series also appear in the series 
on transcendental functions by Erdelyi eta!. (1953-1955, Vol. 2, Chapter 7). 

Tables of the roots of Eq. (6.37) are needed for any practical calculation. 
Two articles dealing with problems of this kind which offer reasonably 
extensive tables are those by Dwight (1948) and Bridge and Angrist (1962). 

6.4. Other Series of Orthonormal Functions 

In this chapter we have seen the Fourier and Bessel series-and many 
of their variants-arise in the description of the normal modes of an elastic 
medium enclosed by rectangular and polar-coordinate boundaries. There are 
at least two directions in which this approach can be generalized: first, by 
consideration of more general boundary conditions and surfaces in higher 
dimensions and, second, as "normal mode" solutions of other types of 
equations. In both cases, though, finding orthonormal and complete sets of 
functions is a Sturm-Liouville problem, which can be posed as follows. 
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6.4.1. The Sturm-LiouviHe Problem 

Define an inner product over the interval (a, b) given by 

(f, g)"' = f w(x) dxf(x)*g(x), w(x) > 0, x E (a, b), (6.41) 

with a positive weight function w(x). Such an inner product defines the 
(Hilbert) space £'"' 2(a, b) of functions f on (a, b) such that (f, f)"' < oo. 
Consider now a second-order differential operator with p(x), q(x), r(x) real. 

d 2 d 
1H1 = p(x) dx2 + q(x) dx + r(x). (6.42) 

We want to examine the conditions under which IHI is hermitian, i.e., 
{IHif, g)w = (f, 1Hlg)00 • Performing the necessary integrations by parts, denoting 
dfdx by "V for the sake of brevity, and suppressing arguments, we find 

(IHif, g)"'= f w dx[(p\72 + q"V + r)f*]g 

= {wp(g"Vf* - J*Vg) + [wq- V(wp)]f*g}i~ + f w dxf* 

x {p\72 + w- 1 [2"V(wp) - wq]"V + w- 1 ("V2{wp) - "V(wq)] + r}g. 

(6.43) 

So that (6.43) will equal {f, IHig)w for arbitrary f and g it is sufficient that 
(a) "V(wp) = wq, which turns the operator in curly brackets into IHI; the 
boundary term disappears if either {b) Vhfhix=a = "Vhfhix=b for h = f and g 
or (b') "Vhfhix=a = ka and "Vhfhix=b = kb, ka and kb constants. These condi
tions direct us to consider operators (6.42) of the form 

d d 
IHI = [w{x)]- 1 dx w(x)p(x) dx + r(x), (6.44) 

which, we are assured, are hermitian with respect to the inner product (6.41) 
in spaces of functions which satisfy boundary conditions which are either 
periodic or fix the logarithmic derivative at the interval ends. 

We now pose ourselves the task of finding the solutions IJ'.>.(x) to the 
eigenvalue equation 

(6.45) 

which are in ~ 2{a, b) and which satisfy the vanishing of the boundary term 
by {b) or (b'). We assume here for mathematical tractability that the set of 
values over which .\can range-the spectrum of IHI-is an infinite, discrete set. 

The solutions to (6.45), once they are explicitly found, will provide us 
with an orthogonal set of functions which can be normalized so that 
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( cp11, Cf'u)w = S11u- The proof of this fact is completely analogous to the proof 
in (1.106) for finite-dimensional vector spaces and was briefly commented 
upon following Eq. (6.4) in discussing eigenfunctions of the Laplacian which 
vanish on finite, closed boundaries. 

Exercise 6.21. Verify the validity of the above construction for the operator 
d 2 fdx 2 , Eq. (6.44) with w(x) = 1 = p(x), r(x) = 0, for the interval ( -7T, 7T] with 
periodic boundary conditions (b) leading to the functions (27T)- 112 exp(imx), 
mE fZ', A = - m2 • Note the slightly disturbing feature that the nonzero eigen
values of d 2/dx2 are doubly degenerate. 

Exercise 6.22. Verify the validity for d 2/dx2 under conditions (b') 
in a general interval (a, b). The solutions to (6.45) have the general form 
fu(x) = c" sin(jtX) + du cos jLX, A = -jL2. Assuming that VJ;,ffulx=a = ka and 
Vfu!fulx=b = kb, find the allowed values of IL and the corresponding ratio of cufdu. 
Normalize. [See Titchmarsh (1946, Section 4.1).] 

Exercise 6.23. Study the Bessel series of annular functions (6.38) as stemming 
from the eigenvalue equation (6.20), which has the form (6.44)-(6.45) with 
w(x) = x, p(x) = 1, r(x) = - m 2/x2 , m > 0. The solutions (6.21) are further 
curtailed by the boundary conditions on (p1, P•): k01 = oo = k02 • Other boundary 
conditions will give versions of the Dini series. [See Titchmarsh (1946, Section 
4.7 et seq.).] 

Exercise 6.24. Consider Bessel's differential equation (B.12) written as an 
eigenfunction equation with eigenvalues m2 of the form (6.44)-(6.45) with 
w(x) = 1/x, p(x) = x 2 = r(x). What boundary conditions give the orthogonality 
relations for the expanding functions employed in the Neumann series? 

6.4.2. On Eigenvalues, Orthogonality, and Completeness 

It should be observed that only orthogonality of the eigenfunction set is 
guaranteed by the hermiticity of the operator 11-U. Completeness is a more 
difficult property to prove or verify. When the operator is self-adjoint (see the 
discussion in Section 4.6) and the spectrum as assumed above, the eigen
function set is complete. An arbitrary function l(x) E .!l'"' 2(a, b) can then be 
written (approximated in the norm) as a normalized eigenfunction series 

CX) 

l(x) = .2; lnPn(x), X E (a, b), (6.46a) 
n=O 

where the generalized Fourier coefficients In are 

In = ( Cf'm f)., = f w(x) dxpn(x)*l(x). (6.46b) 

The generalized Parseval identity reads 

(f, g)., = f w(x) dxl(x)*g(x) = n~ ln*gn. (6.46c) 



www.manaraa.com

Sec. 6.4] Chap. 6 · Normal Mode Expansion and Bessel Series 249 

Quantum mechanics, in its Schrodinger formulation, is mathematically 
a Sturm-Liouville theory, the operator in question being typically the 
system's Hamiltonian -!V2 + V(x), where V(x) is the potential function. 
The region R where x is allowed to range is usually the whole three-dimen
sional space, so, in a sense, the wave-function expansion lies outside the class 
considered in this part. Yet if the potential is such that is classically constrains 
a particle with finite energy to a bounded region in space, or if we are using 
coordinate systems such as cylindrical or spherical where one or more of the 
coordinates range, due to geometry, over a bounded interval, the result is a 
wave-function series. Of particular importance are the bound-state Coulomb 
and harmonic oscillator systems. The eigenfunction expansions associated 
with the latter will be detailed in Section 7.5; those of the former can be seen 
in most quantum mechanics texts, such as Messiah (1964, Chapter 11). 

6.4.3. Orthogonal Polynomial Series 

Due to their ubiquity, a class of eigenfunction expansions which we can 
hardly escape mentioning is that of the classical orthogonal polynomials. There 
are three families of these, according to whether the interval (a, b) in (6.41) 
is finite, half-infinite [i.e., (a, oo )], or infinite. The first family is that of Jacobi 
polynomials, p~a.i!>(x), orthogonal under (6.41) with (a, b) = ( -1, 1) and 
w(x) = (1 - x)"(l + x)8 , a, fJ > -1. When a = fJ =: y - t, i.e., w(x) = 

(1 - x2)Y- 1' 2, these become the Gegenbauer polynomials C}!'(x) which appear 
in connection with hyperspherical harmonics [for solutions to the angular 
part of theN-dimensional Laplacian, see Eqs. (8.77)]. For y = !, w(x) = 1, 
we have the Legendre polynomials Pn(x), which appear in three-dimensional 
spherical coordinate separation. The second case, half-infinite intervals (0, oo ), 
leads to Laguerre polynomials L~"'(x) when w(x) = x" exp(-x). The Coulomb 
and radial harmonic oscillator quantum systems are solved in terms of these 
functions. Finally, infinite intervals require Hermite polynomials for w(x) = 

exp(- x2). These are present in the harmonic oscillator wave functions in 
Cartesian coordinates. 

The three families of classical orthogonal polynomials are further related, 
with some rather technical restrictions, to the existence of a Rodrigues 
differential recursion formula as shown by Tricomi (1955) [this can be seen, 
in simplified version, in the text by Dennery and Krzywicki (1967, Section 
111-10)]. A result of this recursion formula is that the interval (a, b) determines 
uniquely the weight function w(x) and the differential equation satisfied by 
the polynomials. For the above intervals, the Jacobi, Laguerre, and Hermite 
families satisfy (6.44)-(6.45) with p(x) = 1 - x 2, x, and 1, respectively. 

Books on the series expansion in terms of orthogonal polynomials 
include the classic by Szego (1939), Rainville (1960), and Boas and Buck 
(1964). The general subject of eigenfunction expansions including many 
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concrete examples can be seen in the two-volume work by Titchmarsh (1946, 
1958). A more readable account can be found in Yoshida (1960). 

6.4.4. Two- and Three-Variable Series Expansions 

The wave equation, once the time dependence has been "factored off" 
and replaced by a -w2 term, is a Helmholtz equation such as (6.4). In two
dimensional space, the Helmholtz equation is known to have separable 
solutions in (only) four coordinate systems: Cartesian, polar, parabolic, and 
elliptic. If the boundary conditions are given following these coordinate lines, 
the solutions will be given in terms of circular and Bessel functions in the 
first two cases and parabolic cylinder and Mathieu functions in the last two. 
Corresponding orthonormal and complete sets of normal modes can be 
obtained for elastic media enclosed in such boundaries, except that in the 
last two cases these remain as two-variable u-v function expansions of the 
form Umn(u) Vmn(v), where the separation constants, related to m and n, are 
coupled and do not simplify to single-variable series. Only Cartesian and polar 
coordinates have this property. A variety of problems involving the two
dimensional wave equation with various boundary conditions can be found 
in Morse and Feshbach (1953, Sections 5-1 and 11-2). For parabolic cylinder 
and Mathieu functions we have to turn to more specialized literature (see 
below). The latter are given concise treatment in the textbook by Hochstadt 
(1966). 

The wave equation in three dimensions leads to further special functions, 
since the corresponding Helmholtz equation separates now in 11 coordinate 
systems. The four orthogonal coordinate systems which separate the two
dimensional Helmholtz equation yield, under translations along a normal, 
Cartesian, circular, parabolic, and elliptic cylinder coordinates. Under 
rotation around an axis in the plane they generate spherical, parabolic, and 
prolate and oblate spheroidal coordinates. In addition, there are the conical, 
ellipsoidal, and paraboloidal systems. The surfaces defined by these coor
dinates which can serve as boundaries are three-dimensional conic surfaces. 
New functions appear: associated Legendre polynomials and spheroidal, 
Lame, Jacobian elliptic, and ellipsoidal functions. The three-variable normal 
mode expansions do not simplify to two- or single-variable series except for 
those obtained by translation. The spherical coordinates are somewhat 
special in that their normal modes have the structure Rn1(r)0,m(B)<Pm(¢>). For 
m = 0 they yield the Legendre polynomial series in cos B and the Bessel
Fourier series in r. 

The higher transcendental functions appearing in the solution of the 
Helmholtz equation in two and three dimensions are given a full discussion 
in volumes such as those by Hobson (1931), McLahlan (1947), Meixner and 
Scharfke (1954), and especially Arscott (1964). Of particular importance, the 
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spherical harmonics, orthogonal functions on the surface of a sphere, have 
many interesting group-theoretical properties. These have been presented in 
books by Edmonds (1957) and Rose (1957). Last, it should be mentioned 
that the theory of Lie algebras and groups offers a powerful method for the 
determination of certain operator eigenfunctions and their completeness. 
The works of Maurin (1968) and Olevskii (1975) develop this field. 
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Part III 

Fourier and Related Integral 

Transforms 

Integral transforms traditionally refer to the generalized expansion-as an 

integral rather than a series sum-of a function in a continuum of oscillating 

exponential or related functions. Of these, the prime example is the Fourier 

transform discussed in Chapter 7; other commonly used integral transforms, 

those associated with the names of Laplace, Mellin, and Hankel, are studied 

in Chapter 8. Applications are interspersed with the study of their relevant 

properties. 
The presentation of the Fourier transform starts with the classic Fourier 

integral theorem and a survey of the relevant function spaces. The main 

properties under transformations and differential operators are then explored. 

With the introduction of the Dirac S and the related task of finding the 

Green's function for an evolution equation, the basics are given for more 

specialized applications in the last three sections. These include causality and 

its description, oscillator wave-function bases including coherent states, and 

uncertainty relations. The last two, in addition to their inherent mathe

matical interest, are ubiquitous in quantum mechanics. 
In Chapter 8 integral transforms related to Fourier transforms are 

applied to the description of unbounded diffusive and elastic media in one 

and more dimensions. The closing section is intended to provide a panorama 

of other integral transforms which appear in various situations. 

253 
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Chapter 7 

Chapter 8 
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7 

Fourier Transforms 

The continuous partial-wave decomposition of a function over the full real 
line constitutes the Fourier analysis of the function. The precise formulation 
of this decomposition, a broad outline of its range of applicability, and its 
vector space aspects constitute Section 7 .1. Its main properties are given in 
Section 7.2. Section 7.3 proceeds toward applications by the introduction of 
the Dirac 13 and its role in finding the Green's function, which determines the 
time development of diffusive and elastic systems with source or driving
force terms. Except for a few connections, the following three sections are 
independent of each other. Section 7.4 deals with functions which have 
support (i.e., are not necessarily zero) on half-infinite or finite intervals. The 
former are interesting in that they can be used to describe causal processes. 
The Fourier transforms of these functions satisfy certain dispersion relations 
due to their behavior in the complex plane. Subtractions for band-absorption 
filters are described. Section 7.5 deals with the quantum oscillator wave 
functions. The harmonic oscillator wave functions constitute a denumerable 
complete and orthonormal basis for the space of square-integrable functions. 
The repulsive oscillator functions, on the other hand, though less well 
known, serve both as a generalized basis for that space and as a fine working 
ground for various Fourier analysis techniques. Finally, Section 7.6 describes 
a type of complementarity between a function and its Fourier transform 
which gives rise to the Heisenberg uncertainty relation between the dispersion 
in measurement of two quantum-mechanical observables. 

7.1. The Fourier Integral Theorem 

In this section we shall prove the reciprocity between a function f( q ), 
q E I!l (the real line), and its Fourier transform f(p), p E I?l, which was sug-

255 
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gested in two earlier sections. Its precise formulation constitutes the Fourier 
integral theorem. Several examples, useful later on, will be given. 

7.1.1. Introduction 

In Section 3.4 we followed the finite Fourier transform for spaces whose 
dimension was allowed to increase without bound [Eqs. (3.50) and (3.51)], 
while in Section 4.7 we expanded functions f(q) periodic in a growing 
interval [Eqs. ( 4.138) and ( 4.139)]. In both cases we found the limiting 
expressiOns 

f(q) = (277)- 112 1: dpf(p) exp(ipq) =: (IF- 1f)(q), 

f(p) = (277)- 112 L: dqf(q) exp( -ipq) =: (IFf)(p). 

(7.1a) 

(7.1b) 

Provided the integrals exist-or can be made sense of-/(p) is called the 
Fourier transform function corresponding toj(q) and represents the partial
wave coefficients for its generalized expansion, as an integral, in the exponen
tial functions exp(ipq ). The Parseval identity 

(f, g):= L: dqf(q)*g(q) =fa)' dpf(p)*g(p) = (IFf, IFg) (7.2) 

can be seen as an integral version of the Pythagorean theorem for spaces of a 
continuous infinity of dimensions. 

7.1.2. Statement of the Theorem 

The conditions for (7.1) and (7.2) to hold must include that the integral 
over an infinite interval exist and must specify what the meaning of (7.la) is 
when f(q) is discontinuous at some points. The Fourier integral theorem 
states that ifj(q) (a) is piecewise continuous (continuous except at most at a 
number of isolated points), (b) has bounded total variation (so that when 
approximated by any step function the sum of the absolute values of the 
step height differences is finite), and (c) is absolutely integrable [i.e., s:"' dq/f(q)/ <CO], then for any q' E~, 

l~~ (277) -1/2 fL dp l (277) -1/2 f_"'"' dqf( q) exp(- ipq) J exp(ipq ') 

= lim -![J(q' + e) + f(q' - e)]. (7.3) 
B-+0 

When the three conditions are satisfied, (7.3) tells us that (7.1a) indeed 
reproduces thef(q) by the Fourier transform (7.1 b) at all points of continuity 
of the function. Iff( q) is discontinuous at some point qd, the integral in (7. I a) 
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yields the value of f(q) at the midpoint of the discontinuity. This was also a 

characteristic of the Dirichlet theorem for Fourier series in Section 4.2. 

Again we shall work with the understanding that any two functionsf(q) and 

g(q) which differ from each other at most on a denumerable set of points (a 

set of measure zero for Lebesgue integration) are equivalent. 

7.1.3. Proof: The Case of the Rectangle Function 

The strategy we shall follow in proving the Fourier integral theorem is 

first to establish the result-as if it were an example-for a rectangle function 

and then to use some of the limits obtained in order to prove that for any 

piecewise continuous and bounded function the result holds as well. Consider 

the rectangle function of width e and height YJ: 

R<<.nl(q):={YJ, -e/2 ~ q::::; e/2, (7.4) 
0, otherwise. 

[This is identical to the rectangle function introduced in Section 4.2 except 

that the domain of (7.4) is fl, whereas in (4.24) it was the interval ( -TT, TT] 

which when extended to fJ1 carried an infinity of copies of itself spaced by 27r.] 

The Fourier transform of (7.4) can be easily calculated by (7.lb) as 

J?.<<.nl(p) = (27r)-112 L: dqR<<.nl(q) exp( -ipq) 

fe/2 

= (27r) - 1'2YJ dq exp(- ipq) 
-e/2 

= (27r) - 112eYJ sin(pe/2)/(pe/2). 

See Fig. 7.1. Now, in proving (7.3) for this function we must evaluate 

J?.C< · nl( q) := lim (27r)- 112 f L dp R.<• · nl(p) exp(ipq) 
L-+oo -L 

= l~n;, 7T - 1YJ rL dpp - 1 Sin(pe/2) COS pq 

(7.5) 

= lim 7T- 1YJ JL dpr 1{sin[p(q + e/2)] - sin[p(q- e/2)]}. (7.6) 
L-+ co 0 

In the first step we have used the fact that the imaginary part is odd in p 

and hence vanishes, while the second is only a trigonometric identity and a 

halving of the integration range as the integrand is even. We are thus faced 

with limits of integrals of the kind 

I(s) := lim JL dpp- 1 sinps 
L-eo 0 

rb 
= sign s lim J dyy - 1 sin vy, 

v-oo 0 

(7.7) 
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Fig. 7.1. The rectangle function R<'·">(q) (right) and its Fourier transform f?.<e.n>(p) (left) 
for various values of e and 7J such that BTJ = 1. 

where we have changed variables to y := bpfL and v := lsiL/b, b > 0, 
thereby putting the onus of the limit on the argument of the trigonometric 
function. We have introduced the sign function, which takes the values 
I, 0, or -1 according to whether s > 0, s = 0, or s < 0, so as to keep the 
upper integration limit positive. The last form is also valid when s = 0. 
We shall now show that the value of the integral in the last term of (7.7) is 
7T/2. For this purpose we employ the result on the Dirichlet kernel, Eqs. 
( 4.19)-( 4.20), using the evenness of the integrand and a change of scale 
x = 7Tyjb in order to write it as 

lim Jb dy[sin(7Tyj2b)]- 1sinvy = b, 
V-i- co 0 

v = 7T(k + !)/b, k E :!£+ (7.8) 

(.?Z+ is the set of positive integers). Now we subtract this from (7.7) as 

[l(s) sign(s) - 7T/2] = lim ib dyg(y) sin vy, 
V-+ 00 0 

(7.9a) 

(7.9b) 
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The proof that (7.9a) is zero proceeds very much as in the proof of the 

Dirichlet theorem in Section 4.2; namely, we note that g(y) is bounded in the 

interval [0, b] with a bound independent of v, as is its derivative g'(y). We 

can integrate (7.9a) by parts and see that 

limv- 1 [-g(y)cosvylg +Jb dyg'(y)cosvy] = 0. 
V-+00 Q 

(7.9c) 

We conclude that 

lim Jb dyy - 1 sin vy = 7Tj2, 
v-co 0 

(7.10a) 

and hence 

lim JL dpp- 1 sinps = 7T signs. 
L-+oo -L 

(7.10b) 

Thus, the rectangle function is reconstructed in (7.6) as 

_R<e.nl(q) = 7J[sign(q + e/2) - sign(q - e/2)]/2. (7.11) 

We note that (7.11) coincides with the original function (7.4) for all values 

of the argument except at q = ± e/2, where the original function is discon

tinuous while the integral (7.6) converges, as promised by (7.3), to the 

midpoint of the discontinuity: _R<e.nl( ± e/2) = 7J/2. The two functions are 

therefore equivalent. 

Exercise 7.1. Show that the Fourier transform of a rectangle function 
R<b -a.nl( q - (a + b)/2) of height 7J whose nonzero values are in the interval [a, b] is 

R(p) = (27T)- 1127JiF 1[exp( -ibp)- exp( -iap)]. (7.12) 

Verify along the same lines as above that the Fourier integral theorem holds 
for this pair. 

7.1.4. The Case of Piecewise Continuous Functions 

The validity of the Fourier integral theorem for the rectangle function 

and Exercise 7.1 shows that this theorem also holds for step functions com

posed of a finite number of steps. Now, any continuous function with bounded 

total variation can be approximated uniformly by a sequence of step func

tions. Intuitively at least, we can expect that the Fourier integral theorem 

holds for these functions if, additionally, they are absolutely integrable so 

that the first integration in (7.3) is defined. We shall now set out to prove this 

using the results obtained above. 
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If f(x) is absolutely integrable, as long as Lis finite we can exchange the 
order of integration in (7.3) so that 

(27T)- 1l: dqf(q) rL dp exp[ip(q' - q)] 

= 7T- 1l: dqf(q + q')q- 1 sinLq. (7.13) 

The limit L __,. w will thus require an integral of the kind (7.10a) with a 

function f(y + b) placed in company with the oscillating sine. Now, Eq. 
(7.10a) is actually independent of b, which was only required to be finite and 

positive. As we can write J~ = J~' + J:. for 0 < b' < b, the integrals J~ and 

J:· being 7T/2, it follows that J:· vanishes. Note that the argument (7.9) also 
applies for integrals J~, a < 0, as we need only set b = -a in (7.8). Assume 

now thatf(y + c) is continuous and of bounded variation in (a, 0) and (0, b); 
then we state that 

!!7T[f(c+) + f(c-)] if a < 0 < b, 

. Jb . -!nf(c+) if a = 0 < b 
hm dyf(y + c)y - 1 sm vy = . 
v-oo a 17Tf(c-) 1f a < 0 = b 

0 when 0¢ [a, b], 

(7.14) 

where f(c+) := lim,_ 0 f(c + e), e > 0. Indeed, for the second case we can 

break up the integral as J~ = J~ + J: for 0 < 8 < b and 8 as small as we 
please. Using the mean value theorem, we see that the first integral will 

yield 17Tf(c+), while the second one vanishes. These arguments can be 

applied to prove the other cases, constituting essentially the Riemann

Lebesgue theorem. 
The infinite integral in (7 .13) can be now broken up as j:., = t., + 

J: + J:. Since f(q + q') is assumed absolutely integrable on PR, for every 
preassigned ea > 0 and eb > 0 we can find integration limits a and b such 

that r., and J:, with the integrand in (7.13), are less than these numbers, 
leaving only the contribution from J:, to which Eq. (7.14) applies. In this 
way, the Fourier integral theorem (7.3) is proven. 

Exercise 7.2. Consider the single-tooth "sawtooth" function 

( ) ._ {q, q E ( -M/2, M/2), 
SM q ~ . 

0, otherwise, 
(7.15a) 

and its Fourier transform 

sM(q) = (27T)- 112iMp- 1 [cos(pM/2)- (pM/2)- 1 sin(pM/2)]. (7.15b) 

Verify the workings of the proof of the Fourier integral theorem, in particular 
the use of the mean value theorem and the splitting of the integral over ~-
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Following the usage in earlier sections we define the quadratic norm of 
f as 

[I "' ]1/2 llfil :=(f,f)ll2 = -CXl dqif(q)i2 . 

Exercise 7.3. Prove the Parseval identity (7.2) in the form 

1~ L: dpf(p)*g(p) = L: dqf(q)*g(q). 

(7.16) 

(7.17) 

You can replace /(p) and g (p) by their expressions (7 .1 b), exchange integrals for 
finite L, and then use (7.3). Note that, in particular, jjfjj = jjfjj. 

Exercise 7.4. Prove the Schwartz inequality 

j(f, g)j 2 ~ (f, f)(g, g), 

which here assumes the form 

(7.18a) 

(7.18b) 

and its Fourier-transformed version by the Parseval identity. This is nothing 
more than the proof in (1.13)-(1.15). The Schwartz inequality (7.18b) has been 
shown to be but a special case of the more general relation 

IL: dqf(q)*g(q)l ~ L: dqjf(q)*g(q)j 

[J "' ]1/P [f"' ]1/p' ~ -<X> dqjf(q)jP -w dqjg(q)jP' (7.18c) 

for p and p' such that p- 1 + p'- 1 = 1. The last two members are known as 
Holder's inequality. For p = 2 = p' we recover (7.18b). When p = 1, p' = oo, 
the corresponding expression for g(q) becomes the supremum of the function. 

Exercise 7.5. Write out the integral expressions which represent the triangle 
inequalities (1.19) and (1.21). These are a special p = 2 case of the Minkowski 
inequality 

u_: dqjf(q) + g(q)jPrp ~ u_"'"' dqjf(q)jPrp + [L"'"' dqjg(p)jPrp. (7.19) 

which is valid for p ;;,. 1. 

7.1.5. Example: The Gaussian Bell Function 

The unit Gaussian bell function of width w, 

(7.20) 

will be used quite often. It is a function which is infinitely differentiable. It is 
positive, its maximum being G.,(O) = (21Tw)- 112, and it decreases to 



www.manaraa.com

262 Part ill · Fourier and Related Integral Transforms [Sec. 7.1 

0.60653 ... of this value at q = ± w112• Due to the normalization chosen in 
(7.20), G"'(q) can be shown by Euler's integral to enclose unit area, 

L: dqG(JJ(q) = 1, (7.21) 

independently of its width. 
The Fourier transform of the Gaussian (7.20) can be calculated as 

Gw(p) = (27T)- 112 1: dqG"'(q) exp( -ipq) 

= (27T)- 1w- 1' 2 1: dq exp( -q2f2w- ipq) 

= (27T)- 1w- 112 exp( -p2w/2) 1: dq exp[ -(q + iwp)2/2w] 

= (27T)- 112 exp( -p2w/2) 1: dq'Gw(q') 

_ w-112G (p) 
- 1/CJJ • (7.22) 

The fourth equality requires a common complex integration result: The 
integrand is analytic and free from singularities in any band parallel to the real 
axis and decreases rapidly at IRe qj-+ oo; hence J+"'+1

1"'P = J"' . Thus, the 
- oo + COP - ro 

Fourier transform of a Gaussian of width w is another Gaussian of width 1/w. 
See Fig. 7.2. 

Exercise 7.6. Verify the Parseval identity for the Gaussian bell function. 
Show that 

JJGwJJ = (47Tw)- 114 = I! G., I!. (7.23a) 

You can use the value of the Euler integral (7.21) for 2w. Differentiating the last 
equation with respect to w, show that 

I!OG.,I! = (w/1T)ll4j2, (7.23b) 

where (QG.,)(q) = qG.,(q). This is related to the second moment of the Gaussian 
function and will be used in Section 7.6. 

7.1.6. On the Function Spaces ~~ "', !l'2(f!l), !l'1(f!l), and .Y' 

The theory of Fourier transforms includes a much greater amount of 
information and caveats than meets the eye in Eqs. (7.1) and (7.2) or the 
more rigorous (7.3) and (7.17). First, let us emphasize that we can have two 
geometric interpretations of the pair offunctionsf(q) and its Fourier trans
form](p): (a) the view developed in Parts I and II, which regardsf(q) and 
f(p) as the coordinates, in two bases, of the same f, an element of some 
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W=3 

-2 0 2 -2 0 2 

Fig. 7.2. The Gaussian function G.,(q) (left) and its Fourier transform (right) for 
various values of the width. Note that the maximum of the latter is independent 
of w. 

appropriate vector space "Y of functions with domain 8i (see Section 4.5), 
and (b) the Fourier transformation as an active transformation of this vector 
space into itself as f r+ :f = IFf. The two points of view, passive and active 
transformations of "Y, are conceptuaiiy different ways of interpreting Eqs. 
(7.1). Both are useful. The first picture is widely used in quantum mechanics 
where if;(q) and its Fourier transform ,fr(p) represent the configuration- and 
momentum-space wave functions, respectively, of the same state vector 4 
which describes a quantum system. The second picture, to which we subscribe 
in most of this chapter, is to regard the Fourier transform as an operator IF 
mapping various function spaces "Y onto themselves or onto other spaces 
IF"Y, not coincident with "Y. We shall take the argument of the original 
function f to be q and that of :f = IFf to be p. 

We shall now present some function spaces which are of interest in their 
relation with Fourier analysis. We define 'i&'1"' as the space of infinitely 
differentiable functions of fast decrease (i.e., such that for ali m and n, 
qmd"f(q)fdqn--70 as jqj--7oo). Examples of functions in this space are the 
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Gaussian bell function (7 .20), all its derivatives, and any polynomial times 
these functions. It is rather easy to prove (Section 7.2) that the Fourier 
transformation IF maps 'I&'~ co onto itself. Next, we recall the definition of 
.!l'2(8l), the space of square-integrable functions over 8l in the sense of 
Lebesgue, i.e., f E .!l'2(8f) when llf II < oo. As mentioned in Section 4.5, this 
is a definition of integration which is wider and more powerful than the 
ordinary Riemann integral; it coincides with the latter for integrands which 
satisfy the conditions of the Dirichlet or the Fourier integral theorem. The 
Parseval identity suggests that, as the square norm off and f = IFf are equal, 
.!l'2(8f) is also mapped onto itselfunder f. This can be shown rigorously to 
be true. The Parseval identity (7.2) assures us that the Fourier operator IF is 
isometric (i.e., angle and length preserving) in 'I&'~ co; moreover, as .!l'2(8f) is a 
Hilbert space (Section 4.5), the domains of IF andP = IF- 1 [the adjoint of an 
operator being defined as in (1.57)] are equal and characterize IF as a unitary 
operator in .!l'2(8f). 

It is easy to see that 'I&'~ co C .!l'2(8f), but further it can be proven that the 
first space is dense in the second. This is quite important and means that any 
f E .!l'2(8f) can be approximated in the norm as close as desired by a sequence 
of functions which are elements of 'I&'~ co. The implication of denseness of one 
space in another is that certain operators defined in 'I&'~ co can have their 
domains extended to .!l'2(8f), much the in same way that one can extend 
continuous functions from the rationals to Bl. Thus, although most of our 
results will be proven for functions in~~ co, their validity will extend to .!l'2(8f). 

Two more function spaces are important in the context of Fourier 
transforms. One is the space .!l'1(8f) of absolutely integrable functions in the 
sense of Lebesgue. This is the space for which we proved the Fourier integral 
theorem minus the continuity conditions: Lebesgue integration allows us to 
disregard these. The image of .!l'1(8f) under IF does not coincide with .!l'1(8f). 
Finally, there is the space of generalized functions which we denoted in 
Section 4.5 by !/'. The action of IF on this space will appear in Section 7.3 
when the Dirac 8 on 8l is introduced. 

Bringing up these notions-mere definitions and statements-from 
functional analysis may seem discouraging to the reader who is meeting 
Fourier transforms for the first time. He is urged to continue with the next 
few sections so as to get a better grasp of the Fourier pair of equations (7.1) 
by exploring its properties and applications. The development will be done 
with as little hairsplitting as necessary, with the assurance that (most of) the 
formal manipulations can be rigorously justified. 

The existing bibliography is very wide. Functional analysis volumes such 
as those by Gel'fand eta/. (1964-1968), Yoshida (1965), and Kato (1966) 
tackle the general structure of function spaces. Fourier analysis is in the 
foreground of several books, e.g., those by Titchmarsh (1937), Bochner and 
Chandrasekharan (1949), Sneddon (1951), Lighthill (1958), Bochner (1959), 
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Arsac (1966), and Butzer and Nessel (1971). The book by Dym and McKean 
(1972) proceeds with an agile pace through many areas of interest to physi
cists. The applied literature is equally solid: Cars law and Jaeger (1947) and 
three books by Papoulis (1962, 1965, and 1977), to cite only a few. Further, 
most books on mathematical physics include at least one chapter on the 
subject of Fourier transforms. Classics which have been mentioned earlier 
are Whittaker and Watson (1903), Morse and Feshbach (1953), Courant and 
Hilbert (1953), and L. Schwartz (1966). A table of Fourier transforms of 
functions of practical use has been compiled by Oberhettinger (1973b). 

7.2. Various Operators and Operations under Fourier Transformation 

Given a function f(q) and its Fourier transform f(p) = (H)(p), we 
shall apply certain operators to the former-translation, differentiation, etc.
and explore the corresponding transformed operators as applied to the 
latter. Next, operations such as function multiplication and convolution will 
be studied. In this way, (a) we can find Fourier transforms of new functions 
in terms of known ones, and (b) we can study the ways in which the Fourier 
transform operator meshes with others. This will indicate the range of prob
lems for which the Fourier transform becomes the natural solution tool. 

7.2.1. Linear Combination 

The first operation in the function vector space which comes to mind is 
that of linear combination of functions. Assume f(q) and g(q) have their 
corresponding Fourier transforms f(p) and g(p). Their linear combination 
h(q) := af(q) + bg(q), a, bE'(!, quite obviously has h(p) = af(p) + bg(p) 

for its Fourier transform, as can be verified in a single line. The Fourier 
transformation is thus a linear operator: 

!F(af + bg) = aH + biFg, ----------- -i.e., (af + bg)(p) = af(p) + bg(p). (7.24) 

7.2.2. Powers of the Fourier Transformation 

We can apply the Fourier transform twice as [!F(!Ff)](q). Assuming that 
IFf is in the domain of IF [for spaces '(!1 oo, 2"2(~), or others mentioned in 
Section 7.1], it is not difficult to see, changing the sign of q' in (7.3), that we 
obtain 

(!F 2f)(q) = f( -q) =: (Dof)(q), i.e., ](q) = f( -q), (7.25) 

where we have defined D0 = D0 1 as the operator which inverts the real line 
through the origin. Note that 00 2 = ~ is the identity operator, and hence the 
Fourier operator is a unitary fourth root of the identity: 

[F4 = ~. (7.26) 
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7.2.3. The Translation and Multiplication-by-Exponential Operators 

The translation operator, defined by its action on an arbitrary function 

(lryf)(q) :=f(q + y), 

has the following property under Fourier transformation: 

(q)(p) = (IF(lryf))(p) = (27T)- 112 L: dq(lryf)(q) exp( -ipq) 

= (27r)- 112l: dqf(q + y) exp( -ipq) 

= (27r)- 1' 2l: dq'f(q') exp[ -ip(q'- y)] 

= exp(iyp)(IFf)(p) = exp(iyp)f(p). 

(7.27) 

(7.28) 

[Compare with Eqs. (4.36).] If we define lEx as the operator which multiplies 
a functionf(q) by exp(ixq), i.e., 

(IExf)(q) := exp(ixq)f(q) (7.29) 

(where we remind the reader that q and pare dummy variables), we can write 
Eq. (7.28) as an operator equation, 

IFlry = IEyiF, IFlryiF- 1 = lEy, (7.30) 

valid when applied to any function in the common domain of the operators. 
It tells us, as does (7.28), that the Fourier transform of a translated function 
is exp(iyp) times the Fourier transform of the original function. Now 

Dolry0o 1 = 1r -Y• 00 1ExD0 1 = Lx, (7.31) 

which is proven applied to an arbitrary function. It follows thus that (7.30) 
can be written as 

IFIEy = 1r -yiF, IFIEyiF- 1 = 1r -y, (7.32) 

which states that the Fourier transform of anf(q) times exp(iyq) equals the 
Fourier transform off(q) translated by -y. See Table 7.1. 

Exercise 7.7. The translation operator lr Y maps 2"2(9t') onto itself and 
fulfills (lr yf, lr yg) = (f, g). It is hence a unitary operator. Show that unitarity of 
lr Y implies that of lEx by (7.30)-(7.32). Of course this can also be verified directly. 
Each set of operators (7.27) or (7.29) forms a one-parameter continuous group 
since lrylry• = lry+y', IExiEx• = IEx+x', and lro = 1 = IE0 • 

Exercise 7.8. Show that 

(7.33) 

This is the Weyl commutation relation. Its physical interpretation is one of the 
cornerstones of quantum mechanics [see Weyl (1928), and for the corresponding 
harmonic analysis, see Wolf (1975)]. 



www.manaraa.com

Sec. 7.2] Chap. 7 · Fourier Transforms 267 

7.2.4. The Dilatation Operator 

We turn now to the dilatation operator, which we define as 

0 < a E Yl. (7.34) 

[Compare with Eq. (4.44a), where a was constrained to be an integer; the 
change of scale by a - 112 has been kept here so that dilatation will be a unitary 
operation. See Exercise 7.9.) The Fourier transform of (7.34) is, by a change 
of variables involving a, 

6;f(p) = (IF(ICDaf))(p) = (27T)- 112a- 1121: dqf(a- 1q) exp( -ipq) 

= (27T) -112a1t21: dq'f(q ') exp(- iapq ') 

= (!CD1ta(H))(p) = a112/(ap). (7.35) 

Hence the Fourier transform of a function dilated by a factor a is dilated by 
a factor of lfa. See the corresponding entry in Table 7.1, where the factor 
a- 1' 2 in (7.34) is omitted. Thus as an operator equation, 

(7.36) 

In particular, ICD 1 = ~. 

Exercise 7.9. Show that the dilatation operators are unitary, i.e., 

(7.37) 

mapping !£2(9P) onto itself. They also form a one-parameter group since 
[Da[Da, = [Daa'· Study the workings of (7.36) on the unit Gaussian (7.20). 

Exercise 7.10. Consider the most general linear transformation of 9P as 
brought about by 

(7.38) 

Show that the set of all these operators forms a two-parameter group. 

Exercise 7.11. Equation (7.38) implies the operator equation 

(7.39a) 

By multiplying both sides by IF and IF -1, show that 

(7.39b) 

Exercise 7.12. Show that the Fourier transform of an even function [f( -q) = 

f(q )] is even, and that of an odd function [f( -q) = - f(q )] is odd. 
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Exercise 7.13. Show that if f*(q) is the function complex conjugate of f(q) 
and if /(p) is the latter's Fourier transform, the Fourier transform of the former 
will be 

f*(p) = [J(-p)]*. (7.40) 

In particular, if f(q) is a real function of q, the real part of /(p) will be even in p, 
while the imaginary part will be odd. Results of this kind are collected in Table 7 .2. 

7 .2.5. Product and Convolution 

We now turn to the subject of product and convolution of functions 
under Fourier transformation. The ordinary product of two functions is 

(/· g)(q) ";= f(q)g(q), q E flA, 

while we define the convolution ofj(q) and g(q) as 

Cf* g)(q)-= 1: dq'f(q')g(q- q') = L: dq'f(q- q')g(q'), 

(7.41) 

q E flA. 

(7.42) 

The results we shall prove are that (a) the Fourier transform of the product 
of two functions equals (277)- 112 times the convolution of their Fourier 
transforms and that (b) the Fourier transform of the convolution of two 
functions equals (277)112 times the product of their Fourier transforms. The 
operations (7.41) and (7.42) are thus mapped into each other under Fourier 
transformation. 

The properties of integrability and continuity of the convolution will be 
collected after the proof of the preceding statements. For the moment we 
only have to assume that we can exchange the integration order in two 
following two equations. Statement (a) follows from 

/-:fs(p) = (277)- 112 L: dqf(q)g(q) exp( -ipq) 

i.e., 

= (277)- 1 1: dq 1: dpf(p')g(q) exp(ip'q) exp( -ipq) 

= (277)- 11: dpf(p') f""' dqg(q) exp[ -i(p- p')q] 

= (277)- 1121: dpf(p')g(p- p') = (277)-112(/*g)(p), 

f(f·g) = (277)- 112(1Ff) * (IFg), 

(7.43a) 

(7.43b) 
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while statement (b) is proven similarly by exchanging f and j, etc., and 
inverting the sign of the exponentials, leading to 

f--;g(p) = (2-rr)1'2f(p)g(p) 

fF(f * g) = (2-rr )1'2(H). (fFg). 

(7.44a) 

(7.44b) 

[These formulas are the analogues of Eqs. (3.6) and (3.8) for finite Fourier 
transforms and of Eqs. (4.59) and (4.61) for Fourier series. See Table 7.1.] 
In Part II we saw that convolution "smooths" functions. This is the case 
here too. Some results on convolution are the following: (a) Iff, g E 2'2(~), 
their convolution (7.42) exists at every q E ~. is bounded since 

IU* g)(q)l < llfllllgll. (7.45) 

is unzformly continuous, and tends toward zero for I q I ---;.. oo. [The convolution 
need not be in 2'2(~); compare with (3.9)-(3.10) and with (4.70a).] (b) If 
f E 2'1(~) and g is bounded, g( q) :( y, then their convolution (7.42) exists at 
every q, is bounded since 

ICf*g)(q)l :( y I: dq'lf(q')l, (7.46) 

and is uniformly continuous. (c) Iff E 2'1(~) and g(q) is uniformly contin
uous either in 2'1(~) or in 2'2 (~), then so will be, correspondingly, their 
convolution. (d) Iff E '6""' and g is such that (f *g)( q) is finite for all finite q, 
then f * g E '6""'. Other properties are given in Exercise 7 .15. 

Exercise 7.14. Prove the relation between convolution and inner product. 

(7.47) 

where f* represents the function [f(q))*. This is the analogue of Eq. (4.71) and 
reduces the proof of (7.45) to the Schwartz inequality. The proof of the uniform 
continuity of the convolution requires a form of the triangle inequality using 
(7 .4 7) for u q and u q +e for small, arbitrary e > 0. Proofs for the other statements 
can be found in the literature. Sec Dym and McKean (1972). 

Exercise 7.15. Prove the following properties of the convolution: (a) com
mutativity, f * g = g * f; (b) associativity, f * (g *h) = (f *g)* h; and (c) distri
butivity, f * (ag + bh) = af * g + bf *h. 

Exercise 7.16. Show that the convolution between an arbitrary functionf(q) 
and the rectangle function (7.4) of unit area (7] = 1/e) is thee-smoothed function 

lq+E/2 

(f* R(e,1/e))(q) = e-1 dq'J(q'). 
q-e/2 

(7.48) 
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Exercise 7.17. A function can be "cut" between -e/2 and e/2 by multiplica
tion with the rectangle function of unit height. Show that the Fourier transform 
of the cut function, using (7.5), will be 

--- f"' J-R<k,ll(p) = 27T- 1 -oo dp](p- p')p'- 1 sin(p'k/2). (7.49) 

Comparison with (7.14) for the limit k---+ ro should be suggestive. 

Exercise 7.18. Show that the convolution of two Gaussian functions (7.20) 
is a Gaussian, viz., 

(7.50) 

Compare with Eq. (5.11). 

7.2.6. Differentiation 

We shall now analyze the relationship between differentiation and 
Fourier transformation. Assume that a function f(q) and its derivative 
f'(q) := df(q)jdq satisfy the conditions of the Fourier integral theorem. The 
transform of the latter will be 

f'(p) = (27T)- 112l: dqf'(q) exp( -ipq) 

= (27T)- 1 ' 2 [f(q) exp( -ipq)l~oo - J:"' dqf(q) ~ exp( -ipq)] 

= ip}(p). (7.51) 

Here we have integrated by parts, used the fact that the Fourier integral 
theorem requires f( q)---+ 0 for I q I ---+ co in order to eliminate the constant 
term, and recognized}(p) in the final expression. By repeated application of 
(7.51) we can state that if the functions involved satisfy the conditions of the 
Fourier integral theorem, then 

(7.52) 

i.e., the Fourier transform of the nth derivative of a function is (ip)n times the 
Fourier transform of the original function. 

This relation is quite symmetric. If we search for the Fourier transform 
of (- iq )mf( q ), this will be 

(27T)- 1 ' 2 L: dq( -iq)mf(q) exp( -ipq) 

Joo dm 
= (27T)- 112 dqf(q) d m exp( -ipq). (7.53) 

-00 'P 
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That is, 

~ dm-
( -iq)'"j(p) = dpmf(p); (7.54) 

the inverse Fourier transform of the mth derivative of a function is (- iq )m 
times the inverse transform of the function. 

7.2.7. The Operators iQ and IP 

Equation (7.54) is a rather clumsy way of writing a result as the variables 
q and p must be explicitly referred to as the arguments off and J To improve 
the notation we shall introduce the operator iQ whose role is to multiply the 
function it is acting upon by its argument, i.e., 

(Qf)(z) := zf(z), (7.55) 

where z may be q, p, or any other dummy variable. Similarly, letting 

(!Pf)(z) := - i ~f(z) (7.56) 

represent - i times the operator of differentiation, we can put Eqs. (7.52) and 
(7.54) in operator form as 

IFIP = IQIF, IFIQ = -IPIF, (7.57a) 

respectively; that is, 

IFQIF- 1 = -IP. (7.57b) 

Similarity transformation by IF thus turns IP into iQ and conversely with a 
mmus s1gn. 

It requires only one line to prove that iQ and IP are hermitian operators: 
For functionsf(q), g(q) such that qf(q)g(q) is integrable, 

cr, Qg) = 1: dqf(q)*qg(q) = cor, g), (7.58a) 

while if they are differentiable functions whose derivatives are in 2'2(:?!), 
integration by parts yields 

(f, JPg) = -i J:oo dqj(q)* ~g(q) = -if(q)*g(q)l~oo 

+ i f_"'oo dq[~J(q)j*g(q) = (JPf, g). (7.58b) 

For both operators one can find extensions in the domain which turn these 
into self-adjoint operators. Some of the relevant properties of these operators 
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-possibility of exponentiation into unitary operators and existence of a 
complete basis of generalized eigenvectors-were sketched in Section 4.5. 

A further important property of the operators of differentiation and 
multiplication by the argument is their commutator: 

[(QP- PQ)f](z) = ( -iQ ~- Pz)f(z) 

= ( -iz ~ + i ~z)f(z) = if(z); (7.59a) 

that is, 
[Q, P] := QP - PQ = i1. (7.59b) 

A pair of self-adjoint operators with the properties (7.57) and (7.59) are said 
to be canonically conjugate. Later on we shall study the various consequences 
of these simple relations. The appropriate physical interpretation of these 
equations is one of the cornerstones of quantum mechanics, where Q and 
li!P> are the position and momentum operators, li being Planck's constant h 
divided by 21r. Equation (7.59b) is the Heisenberg commutation relation. 

Exercise 7.19. Show that from (7.57) it follows that 

IFS(Q, lfll)IF- 1 = S( -lfll, 0), (7.60) 

where S(Q, lfll) is any polynomial or series function of Q and lfD which specifies 
the order of the entries in its expansion. 

7.2.8. Example: Free-Fall Schrodinger Equation 

In some instances, the property (7.60) allows one to reduce the degree 
of a differential operator and simplify the process of finding a solution. 
Consider the second-order differential equation whose explicit form is 

IHJlifl(q) := (-!-IP> 2 + Q)ifl(q) = ( -! ~: + q ).p(q) = 0. (7.61) 

Application of IF on the left and (7.60) lead to 

(-!02 - IP>).j;(p) = (tP2 + i ~).fi(p) = 0. (7.62) 

The last two members of (7.62) are the transformed, simplified equation 
which, being of first order, can be immediately solved as 

.j;(p) = c exp(ip3(6), C E ct'. (7.63) 

Now the inverse Fourier transform of (7.63) yields a solution to (7.61) as 

ifl(q) = c(2TT)- 1' 2 J~oo dp exp(ip3(6- ipq) =: c(2TT)1' 221' 3 Ai (21' 3q). (7.64) 
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The integral in (7.64) is not trivial. It is known in the literature as Airy's 
integral and gives rise to the Airy function Ai(z) (see Appendix B). It is 
related to the Bessel function of order l Note that the Fourier transform 
method served to find the solution in spite of the fact that ~(p) is neither in 
.2"2(.0i') nor in .2"1(.0i'). In Fig. B.3 we show a plot of the Airy function. It 
decreases exponentially for q > 0 and oscillates increasingly faster for q < 0. 
The second solution of Airy's differential equation (7.61), the Bi(z) function, 
increases faster than exp z for z > 0 but does not appear in (7.62). Actually, 
quite ordinary-looking differential equations possess generalized function 
solutions which, we may surmise, lead to linearly independent solutions. 
Equation (7.61) is related to the free-fall (or linear potential) quantum 
Schrodinger Hamiltonian, which will be further investigated in Sections 8.5 
and 10.1. 

Exercise 7.20. Regarding the commutator symbol defined in (7.59b), show 
that for any three linear operators A, IB, IC with a common domain the commuta
tor is distributive with respect to linear combination, 

[A, biB + ciC] = b[A, IB] + c[A, IC], 

and that a Leibnitz rule of sorts holds: 

[A, IBIC] = [A, IB]IC + IB[A, IC]. 

Exercise 7.21. Show that the commutator of Qm and IP'" is 
min(m,n) (m) ( n) 

[Qm, IP'"] = - k~l k k k !(- i)k!Qm -k!P'n -k, 

(7.65) 

(7.66) 

(7.67) 

where (Z') = m !f(m - k)! k! is the binomial coefficient. This can be done by 
induction, first on m and then on n, using the basic Heisenberg commutation 
relation (7.59b) and the Leibnitz rule (7.66). 

7.2.9. Integration 

The validity of Eq. (7.52) can be extended to negative indices, i.e., to 
integration J< -l>(x) := J: dxj(x'), as jong as the new function is also 
integrable. For this it is necessary thatf(O) = 0, which means that the definite 
integral J: = dxf(x) vanishes. In this case, if f(q) satisfies the conditions of 
the Fourier integral theorem,J<- 1>(q) will do so as well. 

7.2.10. Differentiability and Asymptotic Behavior under Fourier 
Transformation 

Repeated differentiation of a function f( q) with Fourier transform j(p) 
may, as Eq. (7.52) suggests, eventually produce a function whose Fourier 
transform jO{>(p) fails to be integrable because of the growing factor (ip)". 
In that case, although (7.52) may still be formally written, it ceases to be the 
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Fourier transform of an ordinary function. Because of (7.la), the latter would 
have to be the improper integral of a growing function. 

Deferring the introduction of such divergent integrals until Section 7.3, 
we can look closer at those functions f(q) which are n times differentiable 
and whose asymptotic behavior is that of a negative power m of the argument. 
One such result can be easily proven. Assumef(q) and qmdn_t(q)fdq 11 belong 
to .!l'2([Jl). If this holds, it also follows that qrd"f(q)fdq• E .!l'2([?l) for 
0 :::;; r :::;; m and 0 :::;; s :::;; n. As all these functions have finite norm, we can 
use the Parseval identity and triangle inequality in writing 

JJQnpm{ll = JJfF-lQnpm{JJ = JJ!fllnQmfJJ = JJ(Qmpn _ [Qm, pn])fJJ 

:::;; JJQmpnfJJ + JJ[Qm, iflln]fJJ < 00, (7.68) 

where we have used the commutator (7.67) of om and pn, noting that it 
involves only powers of Q and ifll which are less than m and n. Hence iff(q) 
and qmdn_t(q)fdqn E .!l'2([?l), it follows that prdsJ(p)fdp8 E .!l'2([Jl)for 0 :::;; r :::;; n 
and 0 :::;; s :::;; m. The converse of this result is a consequence of exchanging/ 
and/in (7.68). 

If in the preceding result we let m and n be arbitrarily large and note 
that .!l'2([?l) functions must vanish asymptotically, we can validate the 
statement that the Fourier transformation maps 'til"" onto itself. 

7.2.11. Hyperdifferential Form for the Translation Operator 

We shall now proceed to show some operator identities involving the 
Fourier transformation, translations, multiplications, dilatation, and differen
tiation. We shall work in a naive way on a space of 'til"" functions which have 
convergent Taylor expansions and whose Fourier transforms have the same 
properties. The results are valid-in the appropriately generalized sense
for other function spaces as well. 

We show first that [as for Fourier series in (4.124)], 

lr y = exp(iyifll) := i (iy r pn. 
n=O n. 

(7.69) 

This can be proven by writing out the Taylor expansion off( q + y) around q 
and isolating the operator acting onf(q). We can follow an alternative proof 
as, clearly, 

exp(ixQ)j(q) := i (ixt Qnj(q) = exp(ixq)f(q) =: fExf(q). (7.70) 
n=O n. 

Now, by applying IF to the left of this equation and using (7.30) and (7.32) 
for fEx and lr x or (7.57) and (7.60) for Q and ifll, Eq. (7.69) follows from (7.70) 
for y = -x. 
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7.2.12. Hyperdifferential Form for the Dilatation Operator 

One new hyperdifferential relation is that of the dilatation operator 
(7.34). We state that 

[])a= exp[ -iln a·!(QIP' + IP'Q)], a> 0. (7.71) 

To prove this assertion, we apply it first to the function q~<, recalling that 
q dqkfdq = kq~<. Expanding the exponential series and using (7.59) for the 
exponent, we can write 

(7.72) 

The result (7.71) is thus proven for monomials q". Expanding any analytic 
function in q as its Taylor series implies the validity of (7.71) for the space of 
functions where the series involved converge. 

Exercise 7.22. Verify (7.36) using (7.71) and (7.60). 

Exercise 7.23. Detail the validity of (7 .71) for a < 0. It is clearest to work in 
the complex a-plane and see that no multivaluedness appears in the final result. 

7.2.13. Convolution Operators 

Assume S(IP') is an operator function of iP' defined in terms of a formally 
convergent series. We saw that S = exp had the rather simple effect of 
translation on functions f(q ). What about other such functions? We can 
write, using (7.60) and (7.44b) 

S(IP')f = IF- 1 [1FS(IP')IF- 1]1Ff = IF- 1S(Q)IFf = IF- 1(S·IFf) 

= (277)-1'2(1F- 1S) *f. (7.73) 

The action of S(IP') on a function f is easiest to write down after Fourier 
transformation, as S(Q) only multiplies the function fCp) by the function 
S(p). The inverse Fourier transform of this product of functions is thus 
(277)1'2 times the inverse Fourier transform of the function S in convolution 
over q with f. 
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7.2.14. Gaussian Operator 

As an example to be used later in connection with the time evolution of 
the solutions of the diffusion equation, consider the Gaussian operator, which 
we define as 

(7. 74) 

Equation (7.73) together with the property that the Gaussian function be 
proportional to its own Fourier transform [Eq. (7.22)] leads to 

(Grof)(q) = (27T/w)112(Gl/ro(IP')f](q) = (Gro * f)(q) 

= (27Tw)- 112 f'oo dq' exp[ -(q- q')2f2w]f(q'). (7.75) 

7.2.15. Solution of Inhomogeneous Differential Equations and 
Green's Functions 

A second example of the use of (7.73) which reaches a broad range of 
applications refers to the solution of inhomogeneous differential equations 
with constant coefficients, 

dn 
(U(IP')f](q) := ~ Cn dqnf(q) = cp(q), (7.76) 

where cp(q) may be a constant-in case (7.76) is, for instance, a step in the 
solution of a partial differential equation-or a source function representing 
input of heat into a system. The operator on the left-hand side can involve 
terms with negative values of n representing indefinite integration. Equation 
(7. 76) thus has the structure 

U(IP')f(q) = cp(q), U(z) = :Z: Cn(iz)n, (7.77) 
n 

where the cp(q) is known and fixed andf(q) is to be found. Formally, we can 
divide by U(IP'), call S(IP') := [ U(IP')] -I, and use (7. 73) for cp replacing f. 
We shall do this explicitly: the Fourier transform of (7.76) is 

(IFU(IP')f](p) = [U(Q)C](p) = L: Cn(ip)nj(p) = cp(p). (7.78) 
n 

Hence 
(7.79) 

is the Fourier transform of the solution. To recover the latter, we apply the 
inverse transform, thus expressingf(q) as a convolution of the inhomogeneous 
part cp( q) of the equation with a kernel: 

f(q) = (V * cp)(q), (7.80a) 

V(q) = (27T)- 1 J"' dp[L: Cn(ip)n] -l exp(ipq) = (27T)- 112(1F- 1U- 1)(q). 
- 00 n (7.80b) 
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This is Eq. (7.73) with rp for fand u- 1 for S. The actual calculation of V(q) 
may require more techniques than we have at this point: the function U, 

usually a polynomial, can have roots on the real axis, forcing us to run the 
integration over a set of poles. The formal solution (7.80) is presented for the 
moment as a general strategy to be followed. Some tactics will be given in 
Section 7.4. 

7.2.16. Domain Distinctions for Hyperdifferential and Integral Operators 

Various features in the above equations may seem perplexing. Hyper
differential operators S(IP), as such, can be properly applied only to infinitely 
differentiable functions (and even then questions about convergence may 
arise). Yet the last member of (7.73) and certainly the examples (7.75) and 
(7. 77) tell us that in its integral form, if the operator kernel (IF - 1S)( q) is a 
"decent" function, the domain of the operator S (IP) can include discon
tinuous functions and in fact need not even be constrained to integrable or 
2'2(8i') functions. [See, in retrospect, Eqs. (4.99) and (4.100).] It is sufficient 
that the convolution integral exist. The question is, then, what is the domain 
of definition of the operators? If the "ordinary" forms (7.27), (7.34), or 
(7. 7 5) are used to define the translation, dilatation, and Gaussian operators, 
their domain includes all functions in 2'2(8i') (and of course, much larger 
classes such as the generalized function of Section 7.3), while if the hyper
differential forms (7.69), (7.71), and (7.74) are used, the domain is restricted 
at least to 'tt oo functions (although other 'too-spaces may be proposed). The 
two sets of definitions lead, rigorously, to different operators. By abuse of 
notation we have employed the same symbol for both. This has been for 
economy rather than through carelessness, however, since one can show-it 

Table 7.1 A Function and Its Fourier Transform under Various 
Operators and Operations 

Operation f(q) /(p) 

Linear combination af(q) + bg(q) a/(p) + bg(p) 

Translation f(q + y) exp(iyp )/(p) 
exp( -ixq)f(q) /(p + x) 

Dilatation f(aq) a- 1/(pfa) 

Complex conjugation f(q)* /(-p)* 

Multiplication f(q)g(q) (27r) -112(/ * g)(p) 

Convolution (f*g)(q) (277)112/(p )g(p) 

Differentiation d•f(q)fdq• (ip)•/(p) 
( -iq)•f(q) dnj(p)/dp• 
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has been mentioned before in Section 4.5-that ~. oo is dense in the space !/' 

of generalized functions. One can always contrive sequences of~! oo functions 

Un(q )}:= 1 such that limn~ oo(g, fn) = (g, f), where f E !/' and g is any "test" 

function in an appropriate space Y. Extending the domain of the hyperdiffer

ential forms amounts to adding the limit points of all these sequences and 

thus arriving at the domain of the integral operator forms. The two forms 

are thus weakly equivalent. Certain manipulations and proofs will be easier 

on one or another form. The Fourier transform, as a prime example, has 

been given by an integral form [Eq. (7.lb)]. We shall see below that it also 

has a differential realization. 

Exercise 7.24. The Gaussian operators (7. 74) have the manifest property of 
multiplying as 

(7.81) 

Using the associativity of operators and of the convolution product (Exercise 
7.15), you can show rather trivially that the Gaussian convolution relation (7.50) 
holds. 

Exercise 7.25. The multiplication of Gaussian hyperdifferential operators 
(7.81) is formally valid for all w, w' E !Jf, telling us that these form a one-parameter 
continuous group of operators. Yet, in their integral form (7.75), only Gw for 
w > 0 can be applied to 2'1(!Jf) functions. Excluding the case w = 0, show that 
on .!t'1 (!Jf) the set of integral operators (7.75) forms a semigroup. 

Exercise 7.26. Show that if a function f(q) is positive [i.e., f(q) > 0 for all 
q E !Jf] then its Fourier transform /(p) is positive definite, i.e., 

1: dp L: dp'/(p - p')cp(p)*cp(p') > o (7.82) 

for all cp(p) E 2'2(!Jf). This can be proven by writing f as the Fourier transform off 
and exchanging integrals. This result and its converse constitute Bochner's 

theorem. Compare with Exercises 1.19 and 4.6 for Fourier finite transforms and 
series. 

7.3. The Dirac o and the Green's Function for a System 

The Dirac o, as a generalized function, has already appeared in Section 

4.5 in relation to spaces of periodic functions of period 27T. Here, a parallel 

Dirac o will be introduced as a generalized function on the full real line. Most 

concepts developed here will thus have their analogues for spaces of periodic 

functions, but some will be new. We show that the Green's function of a 

system governed by a differential equation is the solution of the inhomo

geneous version of that equation where the inhomogeneous part is a Dirac o. 
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7.3.1. Three Function Sequences and a Limit 

Among the functions we have worked with, we shall select three whose 
common properties merit that we place them under the same symbol. These 
are the rectangle function (7.4), its Fourier transform (7.5), and the Gaussian 
bell function (7.20). We denote them by 

8"(q) := _Rrk.<2">- 1121(q) = (1rq)- 1 sin(kq/2), R<11"·">(q), G11k(q). 

(7.83) 

They are all real and even and enclose unit area. See Figs. 7.1 and 7.2. When 
we examine the convolution of (7.83) with an arbitrary continuous function 
f(q) we obtain, for every k, a function 

f"(q) := L: dq'f(q - q')8"(q'). (7.84) 

Now, upon letting k grow without bound, we assert that we reproduce the 
original function: lim"_,""f"(q) = f(q). Indeed, for the Fourier transform 
of the rectangle function in (7.83), the limit of (7.84) is the content of the 
Fourier integral theorem given in Section 7.1. Equation (7.14), in particular, 
for y = -q' and c = q is the desired expression for q a point of continuity 
of the function, together with the ensuing discussion on the extension of the 
result on J: to J: 00 • For the rectangle and Gaussian function in (7.83) we 
can use the mean value theorem. For the former this is just (7.48) since k = 
lfe -7- oo, while for the latter, since lim"_,"" G11"(q) = 0 for q =fi 0, integration 
limits q ± e' similar to the former can be found such that the integral J:~:: 
approximates J:"" as closely as desired. Ask -7- oo, e' -0>- 0, and (7.21) ensures 
that in (7. 84) f( q) is regained. 

[We have followed the presentation of the limit of (7.83) in complete 
analogy with that of Fourier series in (4.75) up to the choice of sequences, 
R being the analogue of the Dirichlet kernel and the Gaussian being the 
counterpart of the Jacobi theta function. Convolution rather than translated 
inner product only was chosen here for convenience.] 

7 .3.2. The Dirac 8 Symbol 

We shall introduce the symbol of the Dirac 8 on fll, 

lim 8"(q) =: 8(q), 
k-> «< 

(7.85) 

adding that the interpretation is, as in (4.79), that the limit is to be taken 
outside the integral under which the 8"(q) are placed in company with a 
continuous test function f(q). The Dirac 8 and several other symbols with 
similar definition are said to be generalized functions, since they obey many 
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of the formal manipulations usually associated with ordinary functions, as 
will be seen below. As a symbol, the main property of the Dirac a is 

1: dq'f(q')a(q - q') = u * a)(q) = f(q) (7.86) 

for any continuous f(q). It is thus the reproducing kernel for (Lebesgue) 
integration and acts as a "unit function" for the operation of convolution 
(see Exercise 7.15). Note that (7.85)-(7.86) is consistent for function sequences 
(7.83) whether or not f(q) is absolutely integrable. Also, it is not necessary 
that limk~oo ak(q) = 0 for q #- 0 (as it is sometimes stated when introducing 
the Dirac a): The ak sequences can also become infinitely oscillatory, as was 
the case with the R sequence. 

7.3.3. Derivatives of the Dirac a 
Among the three sequences of functions in (7.83), the Rand the Gaussian 

sequences are composed of infinitely differentiable functions (the latter are, 
in addition, 'G'1 "' functions). We can consider their nth derivatives and intro
duce the nth derivative of the Dirac a, 

lim dnak(q)fdqn =: a<nl(q), (7.87) 
k~ 00 

with the same interpretation for this symbol as for (7.85). It has the property 
that, for any 'in functionf(q) [whose nth derivativej<n'(q) is continuous], 

1: dq'f(q')a<nl(q _ q') = (f * a<n>)(q) = pnl(q), (7.88a) 

as can be easily verified before the limit (7.87) is taken. One minor point in 
the proof of (7.88a) which should be noted is that 

o<n>(q- q') = ano(q- q')foq" = ( -I)nana(q - q')foq'n. (7.88b) 

The first form may be extracted from the integral, while the second can be 
used to integrate by parts, ending the verification with (7.88a) for pnl(q '). 

7.3.4. The Heaviside 6-Function 

The Dirac a<nl symbolism can be extended consistently to negative values 
of n, that is, to the antiderivatives, 

o<-ll(q) = f"' dq'o(q') = !, q = 0 =: G(q), 
Jl, q > 0} 
lo, q < o 

(7.89) 
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where we have defined 0(q), the Heaviside step function. Note that 0(0) is 

undefined from the integral (7.89) alone, although if we were to use any of 

the sequences defining the S, the value 0(0) = -! would appear. The converse 

of (7.89), 

d 
S(q) = dq 0(q) =: 0'(q), (7.90) 

can also be used to define the Dirac S, as its placement in convolution with a 

differentiable function (which vanishes at ± oo) yields, by integration by parts, 

(0' *f)(q) = 1: dq'0'(q')f(q- q') = -1: dq'0(q') df(q- q')fdq' 

=-f" dq' df(q- q')/dq' = f(q) = (S * f)(q). (7.91) 

Exercise 7.27. Justify (7.89)-(7.91) by any of the sequences of functions 
(7.83). The R sequence will lead to the use of the Si(q) (sine integral) function, 
while the Gaussian sequence requires the erf(q) (error) function. For a list of 
their asymptotic properties, see the Abramowitz-Stegun tables (1964, Chapters 5 
and 7). 

7.3.5. Divergent Integral Representation of the Dirac S 

The Fourier transform of the Dirac S or its derivatives may be defined 
either as the limit of the Fourier transforms of the sequences (7.83) or directly 

by the use of (7.88) with the Fourier kernel for j, yielding 

(7,92) 

Equation (7.52), treating the S as an ordinary function, leads to the same 

result. 

Exercise 7.28. Consider the Fourier transforms of the sequences (7.83) and 
show that the k-+ co limit of these is indeed (7.92). Examine the norms: show that 
the limit of these is infinity, so that the S<nJ do not belong to 2'2 (£1?). 

As every function in the sequences (7.83) satisfies the conditions of the 
Fourier integral theorem, it follows that [if we keep in mind the definition 
(7.87) and take appropriate account of the exchange of limits, k---'?- oo and 

integration f~L---'?-r "']we can write the inverse Fourier transform of (7.92), 
regaining s<nJ as 

s<nl( q) = (27T) -l f_: dp(ip )n exp(- ipq ). (7.93) 

[Compare Eq. (7.93) with the divergent Fourier series representation of the 

periodic Dirac Sin Eqs. (4.82) and (4.94).] 
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At the risk of becoming repetitious, we must emphasize that the integral 
(7.93) does not exist in the ordinary sense but is a symbolic equality between 
the limits of two sequences of integrals, one containing the functions 
dn8k(q)fdqn and the other its integrated Fourier transform, both in company 
with an arbitrary '{?n test function. The reason for introducing these expres
sions is that they allow us to verify directly in convenient shorthand, and 
disregarding the difficulties in justifying exchange of integrals, many of the 
calculations which otherwise require more circuitous, if rigorous, derivations. 
As an example of its use we shall rederive the convolution equation (7.43): 

fr:g(p) = (27T)- 112 i: dqf(q)g(q) exp(- ipq) 

= (27T) -1/2 f"oo dq [ (27T)-112 L: dpf(p') exp(ip'q) l 
x [<27T)- 1'2 L: dp"g(p") exp(ip"q)l exp( -ipq) 

= (27T)-1/2 L: dp' L: dp'f(p')g(p") 

x {(2rr)- 1 L: dq exp[i(p' + p" - p)q]} 

= (27T)-1/2 L: dp' L: dp'f(p')g(p")8(p- p' - p") 

= (27T) -1!2(] * g)(p ). 

In the last expression we have a divergent integral of the type (7.93) for 
n = 0. By replacing this by 8(p - p' - p"), one of the two integrals is 
canceled, setting either p' = p - p" or p" = p - p'. [In this form, the proof 
of the convolution result can be compared with its finite-dimensional counter
part in Section 3.1, Eqs. (3.1)-(3.3), the coupling coefficient (3.5) being the 
Dirac 8.] 

Exercise 7.29. Using (7.93), verify the result (7.52), showing that the inverse 
Fourier transform of (ip)nj(p) is J<nl(q). Note that the former is a product 
between (ip)n and /(p), so the latter should be the convolution of the inverse 
Fourier transforms. Show that Eq. (7.93) actually embodies-in symbolic form
the Fourier integral theorem. 

Exercise 7.30. Show that the Fourier coefficients (7.92) and divergent integral 
representation (7.93) also represent correctly-up to an arbitrary additive con
stant-the antiderivatives of the Dirac 8. The Heaviside step function-minus t
is obtained from (7.93), with n = -1, when Eq. (7.10b) is used. The reason the 
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constant does not appear is that in validating (7.52) for negative derivatives we 
disregarded the constant term in the integration by parts, arguing that this 
should be zero. This now forces us to obtain functions such that 

lim f(q) exp( -ipq)ll:..L = 0. 
L~oo 

The result is thus that the sign, rather than the Heaviside, function appears in the 
Fourier synthesis. 

Exercise 7.31. Prove that the convolution of two Dirac o's is a o: 
J_: dq o(q - q') o(q - q") = o(q' - q"). 

This is immediate if seen naively. It can also be proven by sequence limits on 
Gaussian or rectangle functions using Eq. (7.50) or (7.48). 

Exercise 7.32. Consider functions f(q) which are periodic in q with period 
2-rr-or any period, for that matter. Show that the Fourier transform /(p) is a 
sum of Dirac o's sitting on p = integer with coefficients which are the Fourier 
series expansion coefficients. In this way one regains Fourier series from the 
transforms. 

The Dirac o will appear time and again in the description of diffusive, 
elastic, and quantum systems. One of its applications will involve o( q 2 - a 2), 

so let us analyze what happens when the argument of the o is a function of q. 
We shall not refer here to sequences of functions but to the intuitive picture 
of o( q) as an infinitely high, narrow "function" with unit area sitting at the 
origin. In this picture, o(q 2 - a2) must have two peaks, one at q = a and 
another at q = -a, as for both points the argument of the o is zero. We shall 
analyze the effect of o(q 2 - a 2) on a test function, changing variables to 
v = q 2 - a 2 . We have to be careful about the ranges, though: define 
q := - (v1 + a2)112 for q < 0 and q := + (v2 + a2)112 for q ): 0. We thus write 

L: dq o(q2 - a2)J(q) = (Looo + L"') dq o(q2 - a2)J(q) 

= - L- a
2 

-tcvl + a2) -l/2 dvl o(vl)f(- cvl + a2)112) 

+ L:2 -tcv2 + a2)-112 dv2 o(v2)f((v2 + a2)112) 

= (2/aJ)- 1/(JaJ) + (2/aJ)- 1/( -Ja[) 

= 1: dq(2/a/)- 1 [o(q- /a/)+ o(q + /a/)]f(q). 

(7.94a) 
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Hence, we can state that 

8(q 2 - a2) = (2[a[)- 1[8(q- [a[)+ 8(q + [a[)]. (7.94b) 

7.3.7. 8(F(q)) 

This result can be generalized to the expression 8(F(q)), where F(q) is 

any differentiable function with simple zeros. (See Fig. 7.3.) Assume the 

roots of F(q) are a1 , a2 , ••• , aN, and let / 1 , / 2 , ... , IN be intervals such that 

(a) ai E /i and (b) F( q) is monotonic on /i so that q = F- 1(v) on /i is uniquely 

defined. The natural change of variable is to let vi:= F(q) for q E /i and 

dq = dvdF'(F- 1(vi)). We can thus write 

f'oo dq8(F(q))f(q) = f r dq8(F(q))f(q) 

= 2 J dvi8(v;)f(F- 1(vi))/F'(F- 1(vi)). (7.95a) 
i F(l;) 

Now, whenever F(q) is a decreasing function of q, F'(q) < 0 and F(Ii) is an 

integration interval where the ordinary bound order is reversed. By placing 

an absolute value on the denominator of the last integral, the normal bound 

order is restored. Use of 8(vi) now yields 

2/(F- 1(0))/[F'(F- 1(0))[ = 2J(ai)/[F'(ai)[. (7.95b) 
i 

Hence, 

(7.96) 

Equation (7.94b) is derived from (7.96) for F(q) = q 2 - a2 , a 1 •2 = +[a[, and 

F'(q) = 2q. In particular, the behavior of the Dirac 8 under change of scale 

of the argument is thus 

Fig. 7.3. A function broken into its 
monotonic segments. 

(7.97) 
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7.3.8. The Dirac o and the Solution of Inhomogeneous Differential 
Equations 

[Sec. 7.3 

The Dirac o appears as a natural tool in the solution of inhomogeneous 
differential equations, i.e., those of the form 

s( q, ~)f(q) = cp(q), (7.98) 

where S(q, dfdq) is a differential operator involving sums of functions of q 
times derivatives in q, cp(q) is a fixed source function, and we must solve for 
f(q). [An equation of this type was seen to describe a damped, forced har
monic oscillator in Section 2.1, where we postponed the general inhomo
geneous solution. A particular case of (7.98) was also briefly given in (7.61)
(7.64) and in (7.77) for the case when Sis a function only of dfdq.] In Sections 
5.1 and 5.2 when we analyzed the solutions to the heat and wave equations 
in continuuus, finite media, we saw that arbitrary initial conditions could be 
seen as an integrated superposition of Dirac o's. Here, too, the source func
tion in (7.98) can be interpreted as such a superposition: 

cp(q) = 1: dq'cp(q')o(q - q'). 

If we can find a solution to the reduced inhomogeneous equation 

s ( q, ~) G(q, q') = o(q - q'), 

then the solution of (7.98) will follow as 

f(q) =I: dq'cp(q')G(q, q'). 

(7.99) 

(7.100) 

(7.101) 

This can be verified simply by substituting (7.101) into (7.98), assuming the 
differentiation in q can be exchanged with integration and applying (7.100). 
An identity follows. The meaning of G(q, q') in the solution of the reduced 
equation (7.100) is that of the Green's function of the process described by 
(7.98): the behavior of the system under a unit (a Dirac o) source or impulse 
function. This is the same Green's function which has appeared time and 
again in connection with the solution of homogeneous differential equations 
and which carried the disturbance due to initial conditions. The connection 
between initial conditions and source functions will be made afterwards. 
Here, we shall find a general solution to the reduced equation (7.100) for the 
case when the differential operator Sis independent of q, i.e., when it appears 
as U(IP), IP :=- idfdq, a function of the derivatives alone. This special case is 
quite important: it describes the damped, driven harmonic oscillator pro
posed in Section 2.1. The damped harmonic oscillator equation in turn is 
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instrumental in the solution of the heat and wave equations in one or more 
dimensions, which will be the subjects of Chapter 8. 

7.3.9. The Green's Function of an Operator 

Consider 

[U(I?)Gq,](q) = S(q- q'). (7.102) 

The Fourier transform of this equation is, due to (7.30), (7.57), and (7.92) 
for n = 0, 

This equation may be solved algebraically: 

Gip) = [(27T)112 U(p)]- 1 exp( -ipq') = (!Lq,V)(p), 

V(p) := (27T)-1'2/U(p). 

(7.103) 

(7.104a) 

(7.104b) 

The inverse Fourier transformation thus gives the solution of (7.102) as 

Gq,(q) = (IF- 1Lq,V)(q) 

= (lr -q'IF- 1V)(q) 

(7.105) 

This function will be actually calculated below for the damped harmonic 
oscillator case. The result (7.105), however, gives us the general result that the 
Green's function for any inhomogeneous differential equation with constant 
coefficients is a function of q - q', q' being the source position and q the 
location where the effect is felt. Such systems are thus translationally invariant. 
In Section 7.4 causality will come into the picture for partial differential 
equations in space and time variables. Equation (7.105) tells us that the 
Green's function of an operator is a function such that the operator turns it 
into a Dirac o. 

The solution (7.102)-(7.105) for V(p) =:f{p) and](p)- 1 := 1/f{p) allows 
us to write a neat formula binding an operator and its Green's function as 

(7.106) 

Exercise 7.33. Use Eq. (7.106) in order to prove that, for the Gaussian 
function (7.20), 

(7.107) 

This formally represents the backward time evolution of a Gaussian temperature 
distribution to the point where it becomes a Dirac S. 
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Exercise 7.34. Formally rederive Eq. (7.106) in the form 

f(q) = (27T)li2J( -i ~)8(q), 

[Sec. 7.3 

(7.108) 

noting that /(- idfdq) can be written in terms of the translation operator 
(7.69) as 

!( -i ~) = (27T)- 112 J_"'., dq'f(q') exp( -q' ~) 

= (27T)-ttz J_"'., dq'f(q')T -q', 

whose action on any generalized function is well defined. 

(7.109) 

Exercise 7.35. Using the results of Exercise 7.34, show that the convolution 
of two functions can be given an operator form as 

(7.110) 

7.3.10. Application to the Driven, Damped Harmonic Oscillator 

A concrete example of a differential equation with constant coefficients 
is given by the forced, damped harmonic oscillator, whose solutions f(q)
using q for time-obey 

( d 2 d ) M dq 2 + c dq + k f(q) = F(q), c ~ 0, (7.111) 

[See Eq. (2.1). We maintain the coefficients of inertia, dissipation, and 
restitution as M, c, and k.] This is a differential equation of the kind (7.98)
(7.102) with 

U(p) = -Mp2 + icp + k = -M(p- P+)(p- p_) = [(27T)112G(p)]-t, 

(7.112) 

where the roots of the polynomial are 

P± := icf2M ± [k/M- (cf2M) 2 ]1 12 =: ir ± p., (7.113a) 

r := cf2M ~ 0, Pe := (Po 2 - r 2) 112, Po:= (k/M) 112• (7.113b) 

The Green's function of the differential operator (7.111) is 

G(q) = -(21rM)- 1 f_~ dp[(p- P+)(p- p_)]- 1 exp(ipq). (7.114) 

The integrand in the last equation, we note, has two poles in the upper 
complex p-half-plane. These are depicted in Fig. 7.4(a) as a function of the 
damping constant c. 
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Fig. 7.4. (a) Migration of the complex osciiiation frequency poles as a function of the 
damping constant c. The arrows indicate the points in the complex p-plane 
where c = 2(kM)112K for K = 0.2, 0.4, ... , 1 (damped oscillating and critical 
cases) and K = 1.2, 1.4, ... , 2 (overdamped case). (b) Complex integration 
contours in the p-plane for q > 0 and q < 0 for a fixed pole pair. 

The techniques of complex integral calculus are a handy tool for evalua
tion of the integral (7.114). The factor exp(ipq) for q > 0 makes the integrand 
vanish asymptotically for large Imp in the upper half-plane, while for q < 0 
the vanishing occurs for large lim PI in the lower half-plane. Cauchy's 
residue theorem can be used to construct integration paths C + and C- as 
shown in Fig. 7.4(b). When q > 0, c+ encloses the two poles, the integration 
along the real axis is the one in (7.114), and the contribution of the semicircle 
at infinity is zero due to Jordan's lemma. For q < 0, C- encloses no singu
larities and hence the integral (7.114) is zero. For the former case, q > 0, 

G(q) = 2m· L Res{[(p- P+)(p- p_)]- 1 exp(ipq)} 

= 21ri[(p+ - p_)- 1 exp(ip+q) + (p_ - P+)- 1 exp(ip_q)] 

= -41T(P+ - p_)- 1 exp( -rq) sinp.q. 

The Green's function (7.114) turns out to be, then, 

) {
(Mp.)- 1 exp(-rq)sinp.q, q~O, 

G(q = 
0, q < 0. 

The value at q = 0 is zero for both cases. 

(7.115) 

(7.116) 

The solution to the original forced damped oscillator equation (7.111) 
is thus 

f(q) = f"' dq'F(q')G(q - q') (7.117) 

plus a general solution of the homogeneous equation. 
The Green's function (7.116) can be compared with the solutions of the 

free damped harmonic oscillator [Eqs. (2.1la), (2.12), and (2.13) for the 
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oscillatory, critical, and overdamped cases for r less than, equal to, and 
larger than (k/ M) 112 (see Fig. 2.4); in fact, they are the same function for 
q = t]. This leads us to interpret the initial conditionf(q') in the latter as the 
result of the action of a unit impulse force F(q) = f(q')o(q - q') in (7.111), 
which is a homogeneous differential equation for q > q'. Similarly, an initial 
velocity/( q ') results from the action of a force/( q ') oo( q - q ')joq and gives 
rise to a solution which is the derivative of (7.116) with respect to q: 

{
-rG(q) + M- 1 exp(-rq)cosp.q, q > o, 

dG(q) = 1/2M q = 0 
dq ' ' 

0, q > 0. 

(7.118) 

For times earlier than that of the initial conditions, the system is considered 
to be undisturbed, as indicated by (7 .116) and (7.118). This property of the 
solution indicates that the system is causal. Causality assures us that the 
effect of a force o(q - q') will reach the system only for times q later than q'. 

7.3.11. Causality and Poles in the Complex Plane 

The statement of causality is again present in (7.117), telling us that the 
disturbance at a point q in time depends only on the past history of the driving 
force: q' E ( -oo, q). Any equation which governs the time development of a 
physical process is expected to exhibit this fundamental requirement. Given 
any differential equation with constant coefficients characterized by U(IP') as 
in (7.102), one can verify easily whether it leads to causal solutions or not. 
Generally, if U(p), as a function of p, has roots in the upper complex p-plane 
only, the system will be causal. The proof of this fact follows closely the above 
development. We have said "generally," since equations can be contrived 
where the function U(p) grows faster than the decrease of the exponential 
factor in (7.114), making the use of the Jordan lemma impossible. Other cases 
which fall outside the statement are those where U(p) has an infinity of poles 
accumulating into an essential singularity or branch cuts which complicate 
the use of the Cauchy theorem. 

7.3.12. "Cut" Functions of Time as Causal Solutions 

Having examined the property of causality and its relation to Fourier 
transformation, we shall examine again the solutions of the forced, damped 
harmonic oscillator, assuming that all the observable quantities are zero up 
to an initial time a and beyond a final time b. The first requirement corre
sponds physically to either the situation where the measured quantities and 
driving force are actually zero up to that moment or where the measuring 
process starts at q = a. At that instant, the observed values are fa:= f(a) and 
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J: := df(q)fdqiq=a· The second requirement [f(q) = 0 for q > b] similarly 

means either that the system is in equilibrium, that we have turned off the 

measuring apparatus, or that a power failure has ended our day's work. The 

boundary values h := f(b) and 1; := df(q)fdq iq=b are not expected to be 

present, however, in the prediction of f(q) for a < q < b. We consider 

functionsfab(q) which are zero outside the finite interval [a, b]. Consequently, 

their derivatives include Dirac S's at a and b because of the discontinuities at 

these points: 

Uab)'(q) = S(q - a)fa - S(q - b)h + (f')ab(q), 

Uab)"(q) = S'(q- a)fa - S'(q- b)h + S(q- a)J: 

- S(q - b)J; + (J")ab(q). 

(7.119a) 

(7.119b) 

We must take some care in distinguishing the derivatives of cut functions 

Uab)', etc., from the cut derivatives of functions (f')ab· See Fig. 7.5. It is the 

former which appear in the damped oscillator differential equation (7.111). 

Fourier transformation of (7.119) yields 

(f)ab(P) = (27T) -l/2 exp(- ipq )f( q) I~= a + iplab(p ), (7 .120a) 

cf)ab(p) = (27T)- 112ip exp( -ipq)f(q)i~=a 
+ (27T)- 112 exp( -ipq)f'(q)i~=a- p2j'ab(p). (7.120b) 

Fig. 7.5. Cuts, derivatives, and cut deri
vatives. (A) An "arbitrary" 
uncut function f(q). (B) The 
cut function !ab(q). (C) The 
derivative of f(q). (D) The cut 
derivative. (E) Derivative of the 
cut function. 
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The Fourier-transformed differential equation thus yields, after some 
rearrangement and solving for iab(p), 

(7.121a) 

where, using (7 .112), 

jF(p) := -M- 1[(p- P+)(p- p_)]- 1F(p) = (2TT) 112G(p)F(p) (7.121b) 

is the part of the solution determined by the driving force, and, for d = a or 
b, the boundary conditions appear as 

ja(p) = -(2TT)- 112[(p- P+)(p - p_)]- 1 exp( -idp)[(ip + c(M)fa + f~] 
~ 

= [(cfa + Mf~) + ipMfa](lr -aG)(p), (7.121c) 

where lr -a is the translation operator (7.27)-(7.30). The cut solution to the 
problem is finally the inverse Fourier transform of (7.121). Using results on 
translation, convolution, and differentiation, we can write 

fab(q) = JF(q) + fa(q) - j,(q), (7.122a) 

Jmln(q,b) 

fF(q) = (F* G)(q) = a dq'F(q')G(q- q'), (7.122b) 

fa(q) = [(cfa + Mf~) + Mfadfdq]G(q- d) 

= fa[cG(q - d) + MdG(q - d)fdq] + Mf~G(q - d). (7.122c) 

7.3.13. Stationary and Transient Solutions 

The solution fab(q) is composed of three parts. The first, JF(q), is the 
response of the system to the driving force F(q) and equals (7.117) for a 
force which may be nonzero only for q E [a, b]. It is referred to as the 
stationary solution of the inhomogeneous differential equation. Next, we 
have two transient terms which depend on the boundary values of Jab( q) at a 
and b and which are solutions to the homogeneous differential equation. 
We now analyze the way the three summands in (7. I 22a) combine, referring 
to Fig. 7.6. The first part,fF(q) [Fig. 7.6(B)], is due to the source function 
[Fig. 7.6(A)]. It is zero for q ~ a, and because of the 0(q - q') behavior of 
the Green's function, it will only contain information about the source for 
a < q' < q. This is causality. For q > b, F(q) is zero and leaves fF(q) to 
osciiiate freely with the damping of the medium. Next, we have the boundary 
term fa(q) in Fig. 7.6(C). It is zero up to q = a, where it jumps to fa with 
slope f~ and oscillates freely thereafter. The third part, f,(q) in Fig. 7.6(D), 
is zero up to q = b; jumps to];,, the value of the first two terms at q = b, with 
slope f~; and oscillates freely. The sign of];,( q) in (7.122a) is negative, how-
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Fig. 7.6. Driving force and causal 
response. (A) The applied 
driving force during the 
time interval [a, b]. (B) 
The pure time-unlimited 
response of the system to 
the driving force. (C)" Ar
bitrary" initial conditions 
to the measurement pro
cess. (D) Boundary condi
tions at q = b due to the 
the cut of the observation 
interval. (E) Total mea
sured response of the sys
tem in the time interval 
[a, b]. 
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ever. This means that the latter function combines with the first two to yield 
a total value of zero for !ab(q ), q > b. This is shown in Fig. 7.6(E). 

The overall statement of causality is then that, for a < q < b, fab(q) 
contains information about the initial conditions and the source function 
up to the time of measurement. The boundary conditions at q = b do not 
enter the solution at all. As expected, a hypothetical future power failure 
cannot affect the outcome of the experiment. 

The mathematical aspects of causality will be further analyzed in 
Section 7.4 from the point of view of Fourier transforms. Laplace transforms 
will be used in Section 8 .1. 

7.4. Causality and Dispersion Relations 

In this section we shall investigate some properties of functions faoo(q ), 
f- oo b(q ), andfab(q) which have support on the intervals [a, co), (-co, b], and 
[a, b], i.e., f.(q) = 0 for q outside these intervals. The constraints on the 
Fourier transforms of such "cut" functions will lead us to some basic 
requirements-called dispersion relations-which enter the description of 
causal filters, refractive media, and scattering amplitudes between elementary 
particles. 
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7.4.1. Causal Functions 

Consider the causal exponentially damped function with support on the 
half-line [a, oo): 

{
exp[- e(q - a)], q < a, 

e.(q - a) = (lr -a0.)(q) := l, q = a, 

0, q < a, Re e > 0. 

(7.123) 

Note that for Im e =I 0 the function oscillates as well. Its Fourier transform 
can be easily found as 

(IF(lr -a0e))(p) = (21T)- 112 f"' dq exp[ -e(q- a)- ipq] 

= -i(21T)- 1' 2(p - ie)- 1 exp( -iap). (7.124) 

It is a function with a single, simple pole at p = ie in the upper complex p
half-plane, with residue - i(21T) - 112 exp(ae ). The Heaviside step function 0(q) 
in Eq. (7.89) is the limit of (7.123) as e __,.. o+ from the upper complex e-half
plane. 

7.4.2. Two Results on Fourier Transforms of Causal Functions 

Equations (7.123) and (7.124) will be used later on. Certain characteris
tics of the latter, however, are common to Fourier transforms of all functions 
with support on the half-line [a, oo ). Consider one such function 

{
f(q), q > a, 

faro(q) = tf(a), q =a, 

0, q <a, 

(7.125) 

which we assume satisfies the conditions of the Fourier integral theorem. 
Its transform is thus 

.faro(P) = (21T)- 112 L"' dqf(q) exp( -ipq). (7.126) 

We shall now explore the general properties of (7.126) which result from the 
restriction (7.125). These turn out to be rather recognizable features as a 
function of complex p = Rep + i Imp. We state that the Fourier transform 
of a causal function which has support on [a, oo) is (a) an entire analytic 
function in the lower complex half-plane Imp < 0 (entire functions in some 
region, we recall, are those which do not exhibit singularities of any kind in 
that region), and (b) its growth in the lower half-plane is bounded by 
C1 exp( -a[Imp[), where C1 is a constant. Moreover, the inverse Fourier 
transform of a function satisfying (a) and (b) is one with support on [a, oo ). 
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We prove the second statement first by the estimate on (7.126), 

i/aao(P)i :( (277)- 112 i"' dqlf(q)l·lexp( -ipq)l 

= (277)- 112 i"' dqlf(q)l exp(qlmp). (7.127) 

As q is not bounded from above, the estimate is vacuous for Imp > 0 since 
the last term is infinity. For Imp < 0, as a < q, exp(a Imp) majorizes the 
exponential factor and hence, as anticipated, 

l.laoo(P)i :( (277)- 112 exp(almp) L"' dqlf(q)l 

=: C, exp( -allmpl). (7.128) 

The constant C1 is finite iff(q) is assumed to be in 2"1(~). 

Exercise 7.36. Since by assumptionf(q) is of bounded total variation, find 
from (7.127) the alternative estimate for 

ilaoo(P)i.;;; (277)- 112 max lf(q)l·llmpl- 1 exp(-qllmpl). 
qe(a,oo) 

(7.129) 

To show that .laoo(P) is an analytic function in the lower half-plane 
Imp < 0, the basic argument is that the total derivative of (7.126) with 
respect to complex p exists as the factor exp(- ipq) is entire and analytic in 
the complex plane p and 

dlaro(p)/dp = (277)- 112 f' dq(-iq)f(q)exp(-iqRep)exp(qlmp). (7.130) 

For all complex p with Imp < 0 the existence of the integral is guaranteed 
in spite of the extra factor - iq because of the decreasing exponential term. 
The bounds (7.128)-(7.129) assure us that no infinities are present. This 
argument extends to all derivatives in the Taylor series for laoo(p). 

7.4.3. The Converse Result 

The proof of the converse, namely that if laro(P) is an entire analytic 
function and majorized by (7.128)-(7.129) in the lower complex half-plane, 
its inverse Fourier transform is zero in (-co, a), is performed straight
forwardly: 

faoo(q) = (277)- 112 f_"'"' dpla"'(p) exp(ipq) 

= (br)- 112 f_"'"' dplaao(P) exp(iq Rep) exp( -q Imp). (7.131) 
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For Imp < 0 the integrand is analytic, entire, and, moreover, due to (7.128)
(7.129), contains a factor exp[(q- a)Jlmpj]. For q < a this is decreasing. 
The Jordan lemma and the Cauchy integral theorem can now be used, as in 
Section 7.3, in order to show, by the integration contour in Fig. 7.4(b), that 
(7.131) is zero. For q > a there is no general condition since f(q) in (7.125) is 
arbitrary. 

Exercise 7.37. Use Cauchy's theorem and Jordan's lemma in order to 
perform the inverse Fourier transform of (7.124) and recover the E>,(q) function 
in (7 .123) for q > a. In this case it happens to be possible to use complex contour 
integration for the upper complex p-half-plane as well. This was also possible for 
the damped oscillator Green's function in Section 7.3. The workings of this 
technique for q = a will be discussed below. 

Exercise 7.38. Show the Fourier transform of the exponentially damped 
anticausal function El,(b - q) with support on ( -oo, b] to be 

(7.132) 

which exhibits a pole in the lower half-plane. As in Exercise 7.37, verify that the 
inverse Fourier transform of (7.132) is the original function. 

Exercise 7.39. Consider anticausal functions f- oob(q) with support on the 
half-axis (- oo, b ]. Following the proof of the corresponding statements for 
causal functions, show that the Fourier transforms of f- oob(q) are (a) entire 
analytic functions in the upper complex half-plane Imp > 0 and that (b) their 
growth is bounded by 

il-oob(p)[ ~ c;exp(blmp), (7.133a) 

or (h)- 112 max [f(q)[·(lmp)- 1 • (7.133b) 
qE(- OO,b] 

Conversely, show that if J_ oob(p) satisfies (a) and (b), it is the Fourier transform 
of a function which vanishes on (b, oo ). 

7.4.4. Fourier Transforms of Functions with Finite Support 

Last, the Fourier transforms of functionsfab(q) with support on a finite 
interval [a, b] can be analyzed. They will be shown to be entire analytic 
functions on the whole complex plane (excluding the point at infinity, of 
course, since otherwise the function would be a constant). These functions 
lie in the intersection of the classes of causal and anticausal functions with 
support on (- oo, b] and [a, oo ). Their properties will thus be the union of the 
properties of the two classes, and hence !ab(p) will be analytic in the upper 
and lower complex half-planes. Moreover, as the Fourier transform integral 
is over a finite range in q andfab(q) is integrable, the expansion of the Fourier 
kernel exp(ipq) in Taylor series will produce a series of integrals which 
constitutes the Taylor expansion of fab(p) for real p. The circle of convergence 
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is the whole complex plane. The growth of this function will be bounded for 
Imp< 0 and Imp> 0 by (7.128)-(7.129) and (7.133), respectively. Finally, 
the inverse Fourier transform of functions which are entire and analytic on 
'&' with the above bound conditions will have support on the finite interval 
[a, b ]. Results of this kind, relating support, analyticity, and growth, are 
referred to as Paley- Wiener theorems. 

7.4.5. The "Cutting" Process 

Having found the properties of Fourier transforms of functions which 
vanish on a half-axis, we can explore further the "cutting" process. Assume 
f(q) is a function satisfying the conditions of the Fourier integral theorem. 
The three "cuts" one can perform on it are 

faoo(q) = lim G.(q- a)f(q), 
e-o+ 

f-oob(q) = lim G&(b- q)f(q), 
e-+0 + 

fab(q):=faoo(q) -Jboo(q) =f-oob(q) -f-ooa(q), 

f(q) = f- ooc(q) + lcoo(q), c = a or b. 

(7.134a) 

(7.134b) 

(7.134c) 

(7.134d) 

The Fourier transforms of (7.134) can be found as the convolutions of the 
Fourier transforms of the 8& functions, Eqs. (7.124) and (7.132), and/(p): 

f~oo(P) = }~~\ (27Ti)- 1 1: dp'(p- p'- ie)- 1 exp[ -ia(p- p')]](p'), 

(7.135a) 

f-oob(p) = -}~r;;\ (27Ti)- 1 1: dp'(p- p' + ie)- 1 exp[-ib(p- p')]j(p'), 

(7.135b) 

Jab(p) = (27Ti)- 1 1: dp'(p- p')- 1 

x {exp[- ia(p - p')] - exp[- ib(p - p')]}f(p'), (7.135c) 

f(p) = lim (27Ti)- 1 Joo dp'[(p - p' - ie)- 1 - (p- p' - ie)- 1 ] 

e-+0 -oo 

x exp[ -ic(p - p')]f(p'). (7.135d) 

In the expression for fab(q) and its Fourier transform, the limit e--+ o+ 
disappears from the expression, since a rectangle function with value I 
between a and b can be used. We keep the form, however, for purposes of 
uniformity. 
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7.4.6. Boundary Values of Analytic Functions in a Half-plane 

Equations (7.135) involve the expression 

.lc(p) := (2ni)- 1 L: dp'(p- p')- 1 exp[ -ic(p - p')]f(p'), Imp =1- 0, 

(7.136) 

associated to the functions ](p). In (7.136), the pole of the integrand lies on 
the integration path, so we can only give meaning to jc(p) for values of p 
which lie off the real axis. It is not difficult to show that Jc(P) is an entire 
analytic function for Imp =1- 0: the factors of the integrand containing p are 
entire and analytic in this region, and their derivatives with respect top do 
not worsen the integrability with respect top'. In terms of (7.136) we can 
write (7.135) as 

la.oo(P) = lim Ja(P - is) 
£-1'0 + 

J_ oob(p) = - lim Jb(p + is) 
e-+0 + 

for Imp ,;; 0, (7.137a) 

for Imp ;;;: 0, (7.137b) 

Jab(p) = lim <la - Jb)(p - ie) 
e ... o+ 

= lim (Ja - h)(p + is), (7.137c) 

for Imp= 0. (7.137d) 
e-+O+ 

f(p) = lim [.lc(p - is) - .lc(P + is)] 
£-1'0+ 

There are several observations to be made about these equations. The 
first ones pertain to Eqs. (7.137a) and (7.137b) and in fact were implicit in the 
discussion of Fourier transforms of functions with half-axis support. They 
tell us that Fourier transforms of causal and anti causal functions are boundary 
values of entire analytic functions in the lower and upper half-planes, re
spectively. For these, we have interesting relations if the limit e--+ o+ is 
symbolically placed on the integrand, which then becomes (p' + i0+)- 1 

times an integrable function F(p) = exp(- ip' a)](p - p'). The pole now 
slides onto the real axis, and the integration contour must be deformed into 
the lower or upper half-planes (Fig. 7.7), conveniently as a semicircle C6 " 

Fig. 7.7. Deformation of the integration 
contour as the integrand poles 
slide onto the real axis (a) from 
below and (b) from above. 
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of radius S > 0. The integral can be split in two parts, one along the real axis 
minus the interval (- S, S) and the other along the semicircle around the pole. 
The former is called the principal value of the integral: 

fJJ f"' dpp- 1F(p) :=lim (J-o + f"') dpp- 1F(p). 
-oo o-o -co 0 

(7.138) 

This definition is extended to any integrand with singularities on the integra
tion interval by taking limits on both sides of each pole. The other part of the 
integral, over C6 "', uses Cauchy's theorem to evaluate 

(7.139) 

which is valid only if the function is continuous at p = 0. 

7.4.7. (p ± iQ+)-n 

The placing of the limite---* o+ on the integrand thus entails the following 
symbolic relation, 

lim (p + ie)- 1 = &p- 1 ± i7TS(p), 
e-.o+ 

(7.140a) 

where all members are defined in terms of the corresponding quantities under 
integration in company with continuous functions. By formal differentiation 
one arrives at 

Jim (p + ie)-n = &p-n ± i7T( -l)n- 1(n!)- 1 1)<n- 1l(p). (7.140b) 
e-o+ 

As applied to Eqs. (7.135a) and (7.135b), Eq. (7.140a) tells us that 

_,.fc"'(p)} = ±(27Ti)- 1f/JJ"' dp'p'-l exp(-ip'c)](p- p') + i](p). (7.141) 
f-ooc(P) -oo 

It should be emphasized that the principal value of an integral avoids the 
poles of the integrand by excluding a vanishing segment symmetric around 
the pole. 

Exercise 7.40. Verify that (7.140) yields, as in Exercise 7.38, the correct 
fcoo(q) and f-ooc(q), Eqs. (7.134a)-(7.134b). To this end, perform the inverse 
Fourier transform of (7.141) by integration over p. The second summand will 
yield Y(q), while the first will bef(q) times 

(27Ti)- 1.9' L: dp'p'- 1 exp[ip'(q- c)] 

= 7T- 1 lim rL dp'p'-1 Sin[p'(q - c)] = -! Sign(q - C), 
t=~ )6 

(7.142) 

thereby reconstituting (7.134a)-(7.134b) as !(±signs+ 1) = 8(±s). To prove 
(7.142), use the parity of the integrand, its behavior at the origin, and (7.10b). 



www.manaraa.com

300 Part III · Fourier and Related Integral Transforms [Sec. 7.4 

The use of the last equation underlines the importance of considering integration 
intervals symmetric around the origin. 

7.4.8. Cauchy Representation of Functions 

Equation (7.137d) presents a result which is of great interest by itself. 
Assume we have a function f(p) which is quite arbitrary: it may have dis
continuities or be zero on segments. The analytic continuation of such a 
function into the complex plane is generally impossible since, by a well
known theorem, if an analytic function is zero on a segment, it must be zero 
everywhere. What Eq. (7.137d) tells us, then, is that one can find a function 
]c(p) by (7.136), which is analytic everywhere off the real axis such that the 
jump of ]c(p) across this axis is the original function J(p ). 

Exercise 7.41. Consider f(p) to be a rectangle function of value 1 between a 
and b. Show that Eq. (7.136) for c = 0 yields / 0(p) = (27Ti)- 1 ln[(b - p)f(a - p)]. 
The logarithm function has branch points at zero and infinity, and the branch 
cut is usually placed along the negative real axis. This segment corresponds to 
a .:::; p .:::; b. Verify that the jump in the imaginary part of logarithm of 
(b- p)f(a- p) across the branch cut [a, b] is thus 27Ti. The support of/(p) is the 
segment where/~(p) is nonanalytic. For every c E Sf you have such a representa
tion. 

The representation of functions by "jumps" of analytic functions in 
'?? -Yl given by Eqs. (7.136)-(7.137d) for c = 0 is called their analytic or 
Cauchy representation. It is important because it also holds for generalized 
functions as the Dirac 15 and its derivatives: If we place 15(p) in (7.136) for 
c = 0, we obtain B0 (p) = -(27Tip)- 1 . Now, this function is a bona fide 
analytic function except at p = 0, where it has a simple pole of residue 
-(27Ti)- 1 . The jump across this pole in the direction of the imaginary axis is 
infinite, and Eq. (7.137d) assures us that 

15(p) = -(27Ti)- 1 lim [(p - ie)- 1 - (p + ie)- 1] (7.143) 
E--+0 + 

holds. This is actually a result we have obtained before in (7.140) and which 
must have been noted by the attentive reader in Eq. (7.135d), where the 
right-hand side of (7.143) appears in the integrand and acts as a reproducing 
kernel under integration. 

The treatment of generalized functions by complex variable theory and 
Fourier transforms can be made completely in terms of the Cauchy repre
sentation (7.136)-(7.137d). The interested reader is referred to the book by 
Bremermann (1965) for this approach. 

7.4.9. Dispersion Relations 

The relations we have developed for Fourier transforms of functions 
with support on various segments become a handy tool for the further 
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description of causality. Consider the function f(q) in Eq. (7.134a) cut to 

faoo(q). As the Heaviside function 0(q - a) acts as the unit function for this 

space of causal functions, Eqs. (7.135a) and (7.136)-(7.137a) become the 

identity 

faoo(P) = (27Ti)- 1 f_"'"' dp'(p- p')- 1 exp[ -ia(p- p')]faoo(p'), 

Imp < 0, (7.144) 

valid for all causal functions with support on [a, co). For real p we can use 

(7.140) for the factor (p - p' - ie)-1, which replaces (7.144) with the 

principal value of the integral plus :'zlaoo(p). Subtracting this last term, we 

find the relation 

laoo(P) = (7Ti)-lg'J L: dp'(p- p')- 1 exp[ -ia(p - p')]faoo(p), p real, 

(7.145) 

which is also valid for all causal functions satisfying the conditions of the 

Fourier integral theorem. The real and imaginary parts of this equation read 

Refaoo(P) = 7T- 1& f_"'"' dp'(p - p')- 1 Im{exp[ -ia(p- p')]Jaco(p')}, 

(7.146a) 

Im/aoo(P) = -7T- 1& f"co dp'(p- p')- 1 Re{exp[ -ia(p- p')]Jaco(p')}. 

(7.146b) 

Equations binding together the real and imaginary parts of a function 

are called dispersion relations. They are usually found in the literature in the 

form (7.146) for a = 0. We shall now proceed to bring out the physical 

meaning of the dispersion relations (7 .146) in connection with the causal 

filtering of signals. 

Exercise 7.42. Show the dispersion relations for an anticausai function 
f- cob(p) to be identical with (7.144)-(7.146) but for a minus sign in front of the 
integrals. 

7.4.10. Description of Causal Filters 

We consider a given causal function Saoo(q) to represent a signal which 

up to time q = a is zero and which from then on represents some measured 

time-dependent quantity. We can feed this signal as input to a "black box" 

processor and obtain an output signal s'(q). This abstract mechanism applies 

to an electronic device receiving and encoding information, the attenuation 

and selective color filtering of light through a dispersive medium, and the 
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elastic scattering of an incident elementary particle beam (represented by its 
wave function) by an atomic or nuclear traget. The common properties one 
can require for a meaningful description of these processes are that they obey 
the following: (a) linearity: if s1 and s2 are input signals whose separate 
output is s~ and s;, the output of c1s1 + c2s2 , where cl> c2 E ~. should be 
c1s~ + c2s;; (b) time invariance, that is, if the signal s(q) is converted into 
s'(q), any time-shifted version of the same input s(q + q0) for fixed q0 should 
be converted into the corresponding time-shifted output s'(q + q0); and 
(c) causality, which means that the output shall not precede the input: if s(q) 
starts at q = a, s'(q) should not start before q = a. 

From these requirements we can say that if we are able to know the 
output Pooo(q) corresponding to an idealized input S(q), then for any 
input function 

Saoo(q) = i"" dq'S(q- q')saoo(q') (7.147) 

[the Saoo( q ') being now generalized linear combination coefficients], the 
output will be 

S~oo(q) = foo dq'cpooo(q- q')Saoo(q') = (Pooo * Saoo)(q) =: (®saoo)(q). 

(7.148) 

The filtering process (Fig. 7.8) is thus described by a linear operator ® 
whose action on the input signal is given by the convolution with the causal 
filter function Pooo(q). [This operator® can be given a differential form; see 
Eq. (7.110).] Causality of the filter's function implies that a value of the 
output s'(q) at time q depends on the input s(q') for q' before q (q' < q). 
The output signal does not appear before the input. There can be delay 
filters whose describing functions have support on [b, oo), b > 0, causing any 
output to be delayed by b with respect to the input. Another possibility are 
finite-memory filters described by functions with support on a finite interval 
[b, c], 0 < b < c. [In Sections 3.1 and 3.2 we described filters acting on 
signals which were sets of N data points, asking for linearity and for the 
property that waveforms be converted into waveforms of the same frequency. 
The latter amounts to property (b) above. We did not ask for causality in 
Section 3.1, since all components were counted modulo N, with the conse
quence, that, as can be seen in Fig. 3.2, the output signals could propagate 
in both directions, the filtering being seen as a "simultaneous" processing 
of the input points. There, waveform rather than unit-impulse filtering is in 
the fore.] 

Equation (7.148) can be Fourier-transformed into 

(7.149) 
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Fig. 7.8. Causal filtering. (a) "Rectangular" signal and (b) its Fourier transform, show

ing the real and imaginary parts (broken lines) and absolute value (continuous 
line). (c) Causal filter function 'Pooo, a decreasing exponential, and (d) its 
Fourier transform. (e) Causal output signal, convolution of the input and 
filter function, and (f) its Fourier transform [product of (b) and (d)]. 

In this form we display the filter transfer function as the coefficient function 
of p, which modifies each of the input partial waves. [Compare with (3.12).] 

Now, the filter's transfer function cannot be arbitrary, as it is the 
Fourier transform of a function with support on [0, w ). Physically the 
argument can be seen as follows. Assume that cp(p) were 1 for all values of p 

except for p E [r, s], so that all p partial waves would be unaffected by the 
filter except those in the band [r, s], which are absorbed. The filter would then 
subtract from the signal its partial-wave content in this range. If the latter is 
roughly constant, the subtracted part would be the Fourier transform of a 
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s a 

----~--+---4---~q 
0 1 

c d 

Fig. 7.9. Noncausal filtering. (a) The signal and (b) its Fourier transform-the same as 
in Figure 7.8. (c) Noncausal filter function built by specifying that its Fourier 
transform (d) eliminate all partial waves p E (- 5, 5): it is a Dirac 8 due to the 
"background" minus the Fourier transform of the subtracted rectangle. 
(e) Output signal and (f) its Fourier transform. The former has support on the 
entire q line and hence the filter is noncausal. 

rectangle function, Fig. 7.1. The output signal would undergo the process 
drawn in Fig. 7.9, which has turned a causal input into a noncausal output. 
The requirement of a filter to be causal is then that if some partial-wave 
bands are absorbed, the phase of the remaining ones be modified in such a 
way that the output remains causal. Mathematically, if the signal partial
wave content Saoo(P) in (7.149) is entire and analytic in the lower half-plane 
and the output s~oo(P) is required to be likewise, the transfer function cp(p) 
must have the same property. 

The condition for a causal filter is thus that its transfer function satisfy 
the dispersion relations (7.146) for a = 0. We shall now relate this to its 
absorptive and dispersive characteristics. 
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7.4.11. Absorptive and Dispersive Characteristics 

We can write the transfer function in (7.149) as 

cp(p) = (27T)-li2[a(p) + i,B(p)], a(p), ,B(p) real for p real. (7.150) 

If we insist on having a filter which transforms real input signals into real 
output ones, as only real quantities are meaningful (exception taken of 
quantum-mechanical measurements, where phases of the wave function, 
although not directly measurable, have measurable effects), then cp(q) must 
be real, whence (Table 7.2) rp(p)* = cp(-p*). This implies that a(p) must be 
an even function of p, while ,B(p) must be odd. Assume the input signal is a 
single wave: 

s(q) =cos wq, 

s(p) = (7T/2)1' 2 [S(p - w) + S(p + w)]. 

(7.151a) 

(7.151b) 

By taking into account the parity of a(p) and ,B(p) in (7.150), the output 
signal will be 

s'(p) = (7T/2)1' 2{a(p)[S(p- w) + S(p + w)] + i,B(p)[S(p - w) + S(p + w)]} 

= (7T/2)1' 2{a(w)[S(p- w) + S(p + w)] + i,B(w)[S(p- w)- S(p + w)]} 

(7.152a) 

s'(q) = a(w) cos wq + ,B(w) sin wq. (7.152b) 

We can thus identify a(p) with the absorptive characteristics of the filter, 
a(p) = 1 meaning perfect transparency, and ,B(p), which shifts the phase of 
the input monochromatic waves, with its dispersive properties. These are, of 
course, not independent but, if the filter is to be causal, must satisfy the 
dispersion relations (7.146). These read 

a(p) = 7T-lf!jl f'oo dp'(p- p')-l,B(p), 

,B(p) = -7T-lf!JJ L: dp'(p- p')-la(p). 

(7.153a) 

(7.153b) 

In deriving the dispersion relations (7.146) we assumed the causal function to 
satisfy the conditions of the Fourier integral theorem. Now, for band
absorbing filters, a(p) < 1 for some finite bands on the p-line, but a(p) = 1, 
perfect transparency, may be the case for all other values-or it may be 
constant. In this case Eqs. (7.153) cease to be valid as the addition of a 
constant term to a(p) in (7 .153b) does nothing to ,B(p) since 

f!jJ f_"'oo dp'(p - p') -1 = 0 
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while (7.153a) is changed by the constant's addition. Worse cases are those 
in which we want to represent differencer filters, i.e., where s'(q) ~ 
dns(q)(dqn, as there we need rp(q) ~ o(n>(q) in (7.148) and hence cp(p) ~ pn 
in (7.150). The transfer function still qualifies as causal, but the dispersion 
relations (7.153) lose their meaning. For these functions we can still write, 
however, dispersion relations with n subtractions. 

7.4.12. Subtractions 

We shall assume that (p - p 1 - ie')-n]ooo(p), e' > 0, is absolutely 
integrable and, it will turn out, laoo(P) must be n - 1 times differentiable. 
This function is still causal since it is entire and analytic in the lower half
plane as the newly introduced n-fold pole lies on + ie'. We write the usual 
dispersion relation (7.145) for the new function (a= 0 here), letting e' -7 o+ 
and taking note that the principal value in (7.145) does not refer to the new 
limit, for which (7.140b) must be used. We have 

(p- P1)-n]ooo(P) = (rri)- 1& 1: dp'(p- p')- 1 

x {(p' - P1)-n + ( -l)ni7T[(n - 1)!]-1o(n-1>(p' - Pl)} 

X ]ooo(p'). (7.154) 

We thus write the new n-times-subtracted dispersion relation 

n-1 
+ 2 (m!)- 1(p - Pl)mdm]ooo(Pl)/dPlm· (7.155) 

m=O 

For n = 0 we recover (7 .145). The addition of a constant to fa oo (p) now 
requires one subtraction, for which the second term in (7.155) is laoo(p1), 

which means in turn that the value of laoo(P) must be known at least at one 
point p 1 . For n subtractions we must known data values about the function 
laoo(p). The real and imaginary parts of (7.155) will finally relate the absorp
tive and dispersive parts of the filter transfer function. 

Exercise 7.43. Repeat the subtraction procedure using different points 
p 1, p 2, ... , Ps in factors raised to powers n1, n2, ... , n. such that Lk nk = n. Then 
data values can thus be the values of / 0 .,(p) and/or its derivatives at one/several 
points Pk· 
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Exercise 7.44. Repeat the subtraction procedure for functions laao(P) and 
functions 1- aob(p). 

7.4.13. Further Comments and References 

There are many directions in which the interested reader can continue 
in the subject sketched in this section. Bremmerman's book (1965) has been 
suggested before for its unified treatment of complex variable theory, 
generalized functions, and Fourier transforms. Growth conditions of 
Fourier transforms of functions analytic in strips lead to a number of results 
of the Paley- Wiener type. A digest of these can be found in Dym and 
McKean (1972, Section 3.3) or in the introduction of the original book by 
Paley and Wiener (1934). Communication theory, as can be expected, makes 
full use of dispersion relations in describing filter networks with complex 
impedance. On this subject, see the book by Friedland eta/. (1961). Related 
to this subject is the description of the behavior of an electromagnetic signal 
in a dispersive medium, where the phenomena of phase vs. group velocities 
and forerunner waves appear. Brillouin (1960) has written a book on the 
subject with contributions due to Sommerfeld. It does not use the language 
of dispersion relations. A more recent and unified treatment can be found in a 
book by Mi.iller (1969). 

The application of dispersion relations in elementary particle physics 
has grown into a major field including S-matrix theory and Regge poles. 
The fundamental requirement of causality allows the specification of several 
necessary properties of the S matrix, an operator describing a scattering 
process. Subtraction constants are related to interaction strengths. A book 
by Hilgevoord (1960) contains the results up to 1960, before the current surge 
of interest in the field. Many texts on quantum mechanics contain chapters 
on this subject. Among the books specializing in this subject, see those by 
Newton (1964, 1966), Nussenzveig (1972), and Simon (1976). 

7.5. Oscillator Wave Functions 

There is one rather interesting denumerable orthonormal basis {'¥ n}:= 0 

for !f'2(fd) whose properties under Fourier transformation are such that they 
are self-reciprocal under the operation IF'¥ n = (- i)n'¥ n· In this section we 
shall find these functions and explore their main properties. They are par
ticularly important in physics since they happen to be the wave functions of 
the quantum-mechanical harmonic oscillator system. We shall prepare in 
this way the terrain for the introduction of the Bargmann transform (Section 
9.2). The second main topic is the repulsive oscillator wave function basis. 
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7.5.1. Self-Reciprocal Functions and Operators under Fourier 
Transformation 

[Sec. 7.5 

In Section 7.1 we saw that the Fourier transform of a unit Gaussian 
bell function of width w was another such function of width 1/w [Eq. (7.22)]. 
Hence a function proportional to a Gaussian of unit width, 

(7.156) 

will be self-reciprocal under Fourier transformation: IF'I' 0 = 'I' 0 . We have 
chosen the constant 7T- 114 in front of the exponential so that the function will 
have unit norm: 

(7.157) 

[compare with (7.21)]. How can we generate other self-reciprocal functions? 
If we had an operator 7L such that 

IF7LIF-1 = p7l, 

then 7l.'l' 0 as well as any 7Ln'l' 0 would have the property 

IF7l.n':I'o = (IF7l.IF-1)n'l'o = pn7ln':I'o. 

(7.157a) 

(7.157b) 

Moreover, as P = ~ [Eq. (7.26)], p can be only a fourth root of unity, i.e., 
p = 1, -1, i, or -i. Most of the operators we have introduced can be 
expressed in terms of the operators Q and IP' [Eqs. (7.55) and (7.56)]: multi
plication of a function by its argument and - i times differentiation. Further, 
as these operators turn into each other under Fourier transformation [Eq. 
(7.57)], we can propose their most general linear combination: 

7L = aQ + biP'. (7.158) 

Asking for 

A7L = IF7l.IF- 1 = aiFQIF- 1 + biFQIF- 1 =-alP' + bQ, (7.159) 

we obtain b = Aa and a = -A.b. For A = 1 or -1 this equation has only 
the trivial solution a = 0 = b. For A = i or - i, choosing a = 2-1/2 for later 
convenience, we find 

7L := 2-112(Q + iiP') = 2-1/2( q + ~), 

7l.t := 2- 112( Q - i IP') = 2 -1/2 ( q - ~) . 

(7.160a) 

(7.160b) 

We have written (7.160b) as the adjoint of 7L since Q and IP' are self-adjoint 
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operators in 2 2(.'?l) and (i~)t = - i~. Now, by acting on the ground-state 
function (7.156), 7L in (7.160a) produces the zero function: 

(7.161) 

Thus, only 7!_t in (7 .160b) can be used to produce other self-reciprocal func
tions. Since the operator 7!_t is self-reciprocal under Fourier transformation, 
with,\= -i, 7l_t'¥0 will be also; (7Lt)2'¥0 will correspond to,\= -1, (7!_t)3'¥0 

to ,\ = i, and (7Lt) 4'¥ 0 to ,\ = 1. Now, functions corresponding to different 
eigenvalues of unitary (or hermitian) operators are orthogonal. In fact we 
shall show that all '¥ n := cn(1Lty'¥ 0 are mutually orthogonal and choose the 
constants en so that they be orthonormal. For this purpose we need to know 
some facts about the operators (7.160). Their commutator [see Eqs. (7.59), 
(7.65), and (7.66)] is 

[7L, 7!_t] := 7!_7l_t- 7l_t7!_ = t[Q + iiP', Q - iiP'] 

= 1([0, Q] + i[IP', Q] - i[Q, IP'] + [IP', IP']) 

= -i[Q, IP'] = ~. 

By induction, we can prove that 

min(m,n) m'n' 
[7l_m, (7!_t)n] = "'.' · · (7!_t)n- k7l_m- k 

k-4:1 (m- k)!(n- k)!k! · 

Exercise 7.45. Verify (7.163). Compare with (7.67) for Q) and IP'. 

7.5.2. Orthogonality of the Generated Set 

(7.162) 

(7.163a) 

(7.163b) 

(7.163c) 

From adjunction it follows that, for m > n, ('¥ n• '¥ m) is proportional to 

((7Lty'¥ 0 , (7l_t)m'¥ o) = (7Lm(7!_t)n'¥ 0 , '¥ o) 

= ((7!_t)n7Lm'¥0 , 'l'o) + ([7Lm, (7!_t)n]'¥o, 'l'o)· (7.164) 

Now, due to (7.161), the first term disappears, while the second, after use of 
(7.163c), shows that we are also left with powers of 7L acting on '¥ 0 and 
hence it also vanishes. If m < n,_ we repeat the procedure on the second 
member of the inner product, obtaining zero again. Hence (7.164) is zero 
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form i= n, and all {'l'n};=o are mutually orthogonal. When m = n, the last 
term in (7.164), form = k = n, yields 

('l'n, 'l'n) = lcnl 2(ln(lt)n'l'o, 'l'o) = lcnl 2n! ('l'o, 'l'o). (7.165a) 

This allows us to fix the modulus of en as (n !) -l/2, so that 11'1' n II 1 and, for 
all n, m: 

'Po 

-20 -10 -5 

+0.8 

-0,8 

10 20 

Fig. 7.10. Harmonic oscillator wave functions 
'¥.(q) for various values of n. The 
q-axis is drawn on an arctan scale. 
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Table 7.3 The First Few Hermite Polynomials 

H 0 (q) = I 
H 1(q) = 2q 
H2(q) = 4q 2 - 2 
Ha(q) = Sq 3 - I2q 
H 4 (q) = 16q 4 - 48q 2 + 12 
H 5 (q) = 32q 5 - I60q 3 + !20q 
H 6 (q) = 64q 6 - 480q 4 + 720q 2 - 120 
H 7 (q) = 128q 7 - 1344q 5 + 3360q 3 - 1680q 

H 8 (q) = 256q 8 - 3584q 6 + 13,440q 4 - 13,440q 2 + 1680 

By choosing en as real, the basis functions are thus 

'¥ n( q) := (n !) -l/2(£:t)n'Y o( q) 

= (n! 2n)-1'2( q- !Y'Yo(q) 

= (n!2n7Tl/2)-li2(q- !r exp(-q2/2) 

= (n! 2n7Tli2)-li2( -1)n exp(q2(2)dnjdqn exp( -q2) 

=: (n! 2n7Tli2)-112Hn(q) exp( -q2f2). (7.166) 

Exercise 7.46. Verify the next to last equality in (7.166). This can easily be 
done by induction. Show that '¥ nC- q) = (- 1 )n'¥ n(q ). This is checked by noting 
that 'F0 (q) is even and zt is of odd parity. 

It is not difficult to see that 'Yn(q) has the form exp( -q 2/2) times a 

polynomial of order n, Hn(q). These are the Hermite polynomials. In Fig. 7.10 

we have plotted some '¥n(q)'s for n up to 35. The first few Hermite poly

nomials are given in Table 7.3. Equations (7.166) for n = 0, 1, 2, ... thus 

define a denumerable orthonormal set of functions which are self-reciprocal 

under Fourier transformation: 

(IF'I'n)(q) = exp( -iTrnj2)'Yn(q). (7.167) 

7.5.3. Raising and Lowering Operators 

The construction procedure we have followed is interesting in itself: 

From the ground state '¥0(q) we have been able to obtain all other 'Yn(q) by 

successive application of the raising (or creation) operator zt. The action of 

this operator is to transform 'Yn(q) into 'Yn+ 1(q) as 

(7.168) 
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The action of 7L as defined in (7.160a) is that of a lowering (or annihilation) 
operator: using (7 .161) and (7 .163b ), we find 

lL'I' n = (n !) - 1127L(7Ltl'l' o 

= (n !) -1/2{(7l_t)n7l_ + [lL, (ll_t)n]}'l' 0 

= (n !) -112n(ll_t)n -1'1' 0 = n112'1' n _1; 

in particular, for n = 0 we regain (7.161). 

7.5.4. The Quantum Harmonic Oscillator Hamiltonian Operator 

Equations (7 .168) and (7 .169) can be combined as 

N'Yn(q) := ll_tll_'Yn(q) = n1127Lfo/n-l(q) = n'Yn(q) 

(7.169) 

= ~ (q- ~)(q + ~)o/n(q) = ~ ( -~22 + q 2 - 1)'Yn(q) 

n = 0, 1, 2,.... (7.170) 

We shall call N the number operator for the set {'l'n}:=o· This operator is 
self-adjoint (as [7Lt,7L] = [7!_t,7!_] on 2'2(&?)); its eigenfunctions thus ought to 
be orthogonal, as we showed them to be above. In quantum mechanics, the 
operator N defined here is related to 

1 ( d 2 
) 1 IHJh := 2 - dq2 + q2 = 2 (!P'2 + 1))2) = N + t~, (7.171) 

which happens to be the Schrodinger Hamiltonian for the harmonic oscillator 
system. The eigenfunctions of the Schrodinger operator (7.171), the eigen
states of the system, are thus {'Fn(q)}:=o with eigenvalues-energies
n + t, n = 0, 1, 2,... in natural units. If ordinary physical units are used, 
this is liw(n + -!-), where li is Planck's constant h divided by 27T and w is the 
classical oscillator frequency. The energy being quantized in units of liw, 
ll_t and 7L act as creation and annihilation operators of energy quanta for the 
system. 

Exercise 7.47. Verify the commutation relations 

[N, Z] = -z. (7.172) 

Show that if 'I' n is an eigenfunction of N corresponding to an eigenvalue n, (7 .172) 
implies that zt'I'n and Z'I'n will also be eigenfunctions of N with eigenvalues 
n + 1 and n- 1. 

Exercise 7.48. In searching for operators with the properties (7.157) in order 
to generate self-reciprocal functions under Fourier transformations, we can pro
pose second-order ones of the form 

IFJIJ:-1 = fLJ. (7.173) 
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Following (7.158)-(7.160), show that only fL2 = 1 yields nontrivial solutions. For 
fL = 1, b = 0, and we have a = c, so we define 

(7.174a) 

which is, up to a chosen multiplicative constant, the operator (7.171), which 
neither raises nor lowers '¥n to any of its neighbors. For fL = -1 we have two 
independent solutions: 

(7.174b) 

J _ := t(!P'2 _ 11)2) _ ~ (ii)IP' + !P'il)) = - ±£:2 = J + t =: J 1 - iJ2, (7.174c) 

where we have chosen a convenient set of constants for a and b. The operators 
J + and J _ thus raise and lower '¥ n by twos. Some further group-theoretical 
properties are obtained in Exercises 7.49 and 7.50. 

are 
Exercise 7.49. Verify that the commutation relations of the operators (7.174) 

(7.175a) 

(7.175b) 

[Equation (7.175a) or (7.175b) determines the J's as the generators of the iso
morphic Lie algebras s/(2, R) ~ su(l, 1) ~ so(2, 1) ~ sp(2, R). See the book by 
Miller (1972) on Lie algebras and groups.] Show that, as in Exercise 7.47, if '¥n 
is an eigenfunction of J 0 with eigenvalue n/2, J ± '¥ n will also be an eigen
function of J 0 with eigenvalue (n ± 2)/2. In acting on '¥ 0 the raising operator 
(7.174b) therefore generates all '¥n's for even n only-or all odd n's if we start 
from '¥1. 

Exercise 7.50. Verify the identities 

C := J12 + J22 - Jo 2 = J±J"' - Jo(Jo + ~) = 1'6· (7.176) 

The first equality follows from (7.175) only, while the second requires the concrete 
realization (7.174) in terms of differential operators. Note that [C, Jt] = 0 for 
i = 0, 1, 2, defining Cas the Casimir operator of the Lie algebra (7.175). Show 
that 

4ldn + 12 = (n + 1)(n + 2), 4ldn-l 2 = n(n- 1), 

(7.177) 

by making I[J ± '¥ n l\ 2 = 1 for all n, by using J"' = Jt in order to Jet all operators 
act on one side of the inner product, and finally by applying (7.176). Note that 
(7.177) checks with (7.168)-(7.169) when the relation (7.174) between J's and Z's 
is used. 

7.5.5. Completeness of the Harmonic Oscillator Wave Functions 

We now return to the study of the functions '¥n(q) of Eq. (7.166). We 

note that they are all infinitely differentiable and, due to the exponential 
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factor, are rapidly decreasing, i.e., qmd"\f!'r(q )fdq" ~ 0 for I q I ~ oo and any 
m, n, and r. The set thus belongs to ~l "'. Moreover, as we shall show, an 
!l'2(f!l) function f(q) which is orthogonal to all 1f!'11(q)'s is equivalent to the 
zero function. The denumerable set {\f!' 11(q )}:'= 0 thus constitutes an orthonormal 
basis for !l'2(f?l). To this end, we construct a generating function of the set: 

Gt/t(x, q) := i (n!)-lf2(xf2112)n1J!11(q) 
n=O 

"' 
= 7T- 1 ' 4 exp(q 2/2) 2; (n!)- 1( -xf2)"d"fdq" exp( -q2) 

n=O 

= 7T-l/4 exp( -q2f2 + qx - x2f4) 

= exp(x2/4)\f!' 0(q - x), (7.178) 

where we have used the next to last form of Eq. (7.166) and the Taylor 
expansion of the Gaussian function around q. Now, if ('1'11 , f) = 0 for all 
n = 0, 1, 2, ... and f E !l'2(f!l), then 

0 = (Gt/t(x, ·),f)= exp(x2/4) L: dq\f!'0(q- x)f(q), (7.179) 

which means that (\f!' 0 * f)(x) = 0. The Fourier transform of this restriction 
is \f!'0(y)f(y) = 0, which in turn impliesf(y) = 0, and hencef(q)is equivalent 
with 0. In this sense the set {'l'n}:'=o E ~l"' C !l'2(f!l) is dense in !l'2(f!l) and, 
in fact, also dense in the space of generalized functions .?' with test functions 
in ~l "'. 

7.5.6. Harmonic Oscillator Expansions 

Any vector f in !l'2(f!l) or .?' can be approximated (in the sense of 
the inner product with a test function in ~l "') by a linear combination of ele
ments in 'G'l "' as 

"' 
J(q) = 2: fn'f!'Yn(q), (7.180a) 

n=O 

where, due to the orthonormality of the basis, the generalized Fourier 
coefficients are 

fn 'f! = ('I'"' f). (7.180b) 

The {!11 'ff}:'=o constitute the coordinates of f in the '1'-basis. The original 
function fin (7.180b) and its synthesis (7.180a) can differ at most on a set of 
isolated points on f!l. Moreover, the Parseval identity 

(7.180c) 
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also holds. The completeness of the '¥-basis implies that, in the appropriate 
space of test functions, 

co 

2 'Yn(qS¥n(q2) = S(ql - q2). (7.180d) 
n=O 

Expansion series in the denumerable '¥-basis follow the same philosophy as 
the expansions in exponential and Bessel series discussed in Chapter 6, except 
that the space is here 2'2(~) rather than 2'2(a, b) and the self-adjoint operator 
whose eigenfunctions we are using is N in Eq. (7 .170) rather than 'f/2 as 
before. For the parallel of the Dirichlet conditions for pointwise convergence 
of Fourier series we have to turn to the literature on orthogonal polynomial 
expansions. See the book by Szeg6 (1939, Chapter IX) and those of Alexits 
(1961) and Boas and Buck (1964). As in the case of Taylor series where the 
expansion in powers of q (around the origin) is uniformly convergent within 
the largest circle, with center at the origin, where the function is regular 
(analytic and free of singularities) and divergent outside, expansions in series 
of polynomials orthogonal on a segment (a, b) (i.e., Legendre, Gegenbauer, or 
Jacobi polynomials) converge inside the largest ellipse with foci on a and b 
where the expanded function is regular. For polynomials orthogonal on a 
half-axis (a, co) (i.e., Laguerre polynomials), this region becomes the "in
terior" of a parabola with focus on a, while for Hermite polynomials-and 
thus the present 'Yn(q) functions-the series (7.180a) will converge within any 
band centered around the real axis where the expanded function is regular. 
The convergence is uniform for any finite subregion of this band. If the func
tion has a bounded discontinuity at some point q0 , the width of the band 
shrinks to zero and the series converges-as in the Fourier case-to the 
midpoint of the discontinuity. 

7.5.7. Translations 

We shall illustrate the use of the expansion relations (7.180a)-(7.180d) 
for the case of the translated harmonic oscillator wave function: 

co 

1"a'Yn(q) = 'Yn(q +a)= L: Tmn(a)'Ym(q), (7.18la) 
m=O 

(7.181b) 

In the process of finding the linear combination coefficients Tmn(a), we shall 
present several useful techniques, which will be applied later on. 

According to (7.180b), the solution is 

Tmn(a) = 1: dq'Ym(q)'Yn(q +a). (7.182) 
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This integral is surely a finite number, as the '¥'s fall off as exp( -q 2/2) for 
I ql --?-co, yet it is not trivial to calculate. We can make use of the generating 
function found in (7 .178) by multiplying (7 .182) by powers of two dummy 
variables, summing over n and m, and exchanging sums and integral: 

00 

T(x, y) := .L; (m! n!)-12(xj2112)m(yj2112)nTmn(a) 
m,n=O 

= L: dqGw(x, q)Gw(Y, q + a) 

= w- 112 exp[-(x2 + y 2)/4 + ay- a2j2] 

x L: dq exp[ -q 2 + q(x + y - a)] 

= exp(- a2/4) exp[(xy + ay - ax)/2]. (7.183a) 

To solve the integral we have completed squares in the exponent and used 
the Euler integral (7.21). The use of the generating function thus allows us to 
solve the integral in (7.182) by solving the simpler integral in (7.183a). If we 
can now find the two-variable Taylor series of T(x, y) and rearrange it in the 
form given by the defining sum in (7.183a), we shall regain the coefficients 
Tmn(a). To this end we use the well-known Taylor series of the three last 
exponential functions and a triple-sum rearrangement formula [Appendix C, 
Eq. (C.5)], writing 

00 

T(x, y) = exp( -a2j4) _L (k! m! n!)-12-k-m-n( -l)man+mxm+kyn+k 
k,m,n=O 

co min(m,n) 

= exp( -a2j4) .L; .L; [k! (m - k)! (n - k)!]- 1 
m,n=O k=O 

Comparison of like powers of x andy with (7.183a) thus yields 

Tmn(a) = exp( -a2j4)2-<n+mll2( -l)m(n! m!)1/2 
mln(m,n) 

(7.183b) 

X .L; [k! (m - k)! (n - k)!)- 12k( -l)"'am+n- 2"'. (7.184) 
k=O 

Exercise 7.51. Verify that (7.184) fulfills Tmn(O) = Omn and that due to 
(7.69) 

a 
v;t;.n := oa Tmn(a)[a=O = Om,n-l(n/2)112 - Om,n+l[(n + 1)/2]112 (7.185a) 

constitutes a "half-infinite" matrix which represents V in the '¥-basis and 
agrees with the action of - iiP' on 'Y n(q) obtained from (7.160) and (7.168)-(7.169). 
Equation (7.184) is the exponentiation of (7.185a). 
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Exercise 7.52. By Fourier transformation, find the action of the multiplica
tion-by-exponential operator (7.29). On the '¥-basis functions it is represented by 
a half-infinite matrix whose coefficients Ef:.n(a) are (- i)m-n times those of the 
translation operator in (7.184). From these find that matrix representing I(Ji: 

0 
Q~n := oa E,i;'n(a)la=O = Dm.n-l(n/2)112 + Dm.n+l[(n + 1)/2]112. (7.185b) 

Verify that this agrees with the action of I(Ji on 'Yn(q) obtained from (7.160) and 
(7 .168)-(7.169). 

Exercise 7.53. Verify that Q"' := II Q~nll and P"' := 11-i'v~nll, considered as 
half-infinite matrices whose rows and columns range over all nonnegative inte
gers, in (7.185) satisfy the Heisenberg commutation relation (7.59b). 

One case which will appear later on (as coherent states) is the oscillator 

wave-function series for the displaced Gaussian bell '¥0(q + a). For n = 0 

the sum in (7 .184) reduces to the single term k = 0, and hence 

Tm 0(a) = exp(-a2/4)(m!)- 112( -a/2112)m (7.186a) 

whereby 

"' 
'f"o(q +a)= exp(-a2/4) _L (m!)-112(-aj2112)m'¥m(q) 

m=O 

= exp( -a2/4)G,v( -a, q). (7.186b) 

In view of (7.178), this is an identity. 

7.5.8. Coherent States 

One rather remarkable property of the functions (7.186) is that, for all 

complex a, they are eigenfunctions of the lowering operator: 

(7.187) 

This fact is somewhat unexpected since 71. is not a self-adjoint operator. 

Equation (7 .187) holds as can easily be verified since each term in the 

sum is lowered by one value of m, the term n = 0 disappearing. As the sum 

is infinite, however, lowering the terms by one unit still leaves us with an 

infinite sum. 
A function proportional to (7.186b) can be found by acting with exp(az::t) 

on '¥0(q) and using the first equality in (7.166): 

"' 
Yc(q) := exp(c7l.t)'¥0(q) = _L (n!)- 1c"(7l.t)n'¥0(q) 

n=O 

"' = _L (n!)- 112cn'Fn(q) = exp(c2/2)'¥0(q- 2112c) 
n=O 

= G"'(2112c, q) = 7T-114 exp( -q2/2- c2/2 + 2112qc), 

7l.Yc(q) = Clc(q). 

(7.188a) 

(7.188b) 
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This is the definition of the coherent states in quantum optics [see, for example, 
the book by Klauder and Sudarshan (1968, Chapter 7) for a full account]. 
Mathematically, the states (7.188) do not look, perhaps, too exciting at 
present since they are basically displaced Gaussians. For complex c (7.188) 
will be seen to be rather useful. Physically, moreover, they happen to be the 
closest quantum-mechanical approximation to the classical harmonic 
oscillator motion and are widely employed in laser theory. 

The coherent states (7.188) are not orthogonal; their inner product 
(overlap) can easily be calculated by the unitarity of translations and the 
result (7 .186a) : 

(lc, Yc·) = exp[(c*2 + c'2)/2](lf -2112c'l'o, lf -2112c·'~'o) 

= exp[(c*2 + c'2)/2]('J! o, lf 2112c•- 2112c•'J! o) 

= exp[(c*2 + c'2)/2]T00(21'2c* - 21'2c') 

= exp[(c*2 + c'2)/2] exp[ -(c* - c')2/2] = exp(c*c'). (7.189) 

In Part IV we shall show that the set of coherent states {Yc}ce<or forms a basis 
for the (Bargmann) Hilbert space of entire analytic functions with certain 
growth conditions. 

7.5.9. Some Properties of the Harmonic Oscillator Expansions 

The expansion of an .P2(El) function in a harmonic oscillator wave
function series has several properties which have their counterparts in 
Fourier series and which we have collected in Table 7.4. (a) The 'J! partial
wave coefficients of a linear combination of functions are the linear combina
tion of their partial-wave coefficients. (b) The functions of the '¥-basis are 
real; hence if fn 1/1 are the series coefficients off( q ),f( q )* will have coefficients 
f!*. (c) The series coefficients for f( -q) are, due to the parity of the basis 
functions, ( -1)'1/. (d) The series coefficients for df(q)fdq can be found from 
(7.185a) and are shown in Table 7.4. In this basis, therefore, unlike the 
Fourier case, they are not multiples of the series coefficients of the original 
functions. (e) If j(q) is the Fourier transform of f(q), due to (7.167), their 
'J! partial-wave coefficients will be related as fnl/l = (- i)'fnl/l· (f) Combining 
the two former results or directly from (7.185b) the 'I' coefficients of qf(q) 
can be found in terms of those ofj(q) as in Table 7.4. (g) The role of V under 
Fourier transformation is here taken by the number operator N in Eq. (7.170) 
or IHJh in (7.171). Thus ifj(q) has 'J! coefficientsfnl/1, those of (- d 2fdq 2 + q 2). 

f(q) will be (2n + l)fnl/l· (h) The 'J! coefficients of the productf(q)g(q) are 
the corresponding generalized convolution of the coefficients of the factors. 
The finite-dimensional counterpart of this operation has been discussed in 
Section 3.1. Unfortunately, it is not so simple as for Fourier series or 
transforms. 
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Several miscellaneous properties of the harmonic oscillator functions 
follow. Some of them-mainly pertaining the Hermite polynomials-can be 
found in most special functions texts. 

Exercise 7.54. Relationships between differentiability and convergence rate 
are not so easy to obtain for the '1'-basis coordinates as for Fourier series coeffi
cients in Section 4.4. Using similar techniques-absolute values, Schwartz 
inequalities, and Fourier transformation-for the operator IHI in (7.171), show 
that if f(q) andj{p) are such that their second derivatives are square-integrable 
(i.e., IWII < co, llf"ll < co), then the '1'-basis coefficients' decrease is bounded as 

Ifni ~ (2n + 1)-l(llf"ll + llfntl). (7.190) 

Exercise 7.55. Prove the three-term recursion relation for the harmonic 
oscillator wave functions 

(7.191) 

This can easily be found from (7.166), (7.185), or the Christoffel-Darboux 
formula for Hermite polynomials. It provides an economical algorithm for the 
numerical computation of the oscillator functions. 

Exercise 7.56. Show the explicit form of the Hermite polynomials to be 

[n/2] ( _ 1 )m(2q )n -2m 
Hn(q) = n! .2; I( _ 2 )I , 

m=O m. n m. 
(7.192) 

where [n/2] is the largest integer smaller or equal to n/2. This is most easily done 
using the generating function (7.178), expanding the next to last expression in 
powers of x, and comparing the coefficients with those of the second expression. 
You will come to use a double-summation exchange formula: Eq. (C.3). 

Exercise 7.57. Prove the rather remarkable expression 

(7.193) 

This can be done first for y = t, comparing directly with (7.192) and later effecting 
a change of scale in q. 

Exercise 7.58. Consider the variables q ± := q1 ± q2, so that a.1 = a.+ + 
a._ and a.2 = a.+ - a._. On '??"" functions of q + only, where the operator 
action is well defined, the following identity holds: 

exp( -!c.+ 2 )f(q+) = exp( -ta012) exp( -ta.2 2 )f(q +>· 
Applying this on the Newton binomial 

(7.194a) 

f(q+) = q+n = i (n)qlmqa-m, (7.194b) 
m=O ffl 

you can find by (7 .192) the addition formula for Hermite polynomials, 

Hn(ql + q2) = 2-n/2 m~O (:)Hm(2112ql)Hn-m(2112q2), (7.194c) 
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which in turn leads to 

'P'n(ql + q2) = 7Tl/42-n/2 exp[(q- y)2j2] m~O (:r/2'P'm(21/2ql)'P'n-m(2li2q2). 

(7.195) 

The last equation can be verified independently by multiplying by (x/2 1 ' 2Y/(n !)1 ' 2 
and summing over n, using a double-summation exchange (Appendix C) and the 
generating function (7.178). See the difference from Eqs. (7.181)-(7.184). 

Exercise 7.59. An upper bound for the zeros of Hermite polynomials is 
(n - 1)[2/(n + 2)]112 [see the book by Szego (1939, Section 6.32)]. For large n, 
show that this constrains 'P'n(q) to be significantly different from zero only for 
q :s; (2n)1 12 • The "width" of the functions 'P'n(q) in Fig. 7.10 is thus ~2(2n)112. 
Show that, from the discussion in Section 2.1 and the description of phase space 
(Fig. 2.24), the maximum elongation in p and q of an oscillator with energy 
n := E = (p 2 + q2)/2 is precisely (2n)112. 

7.5.10. Fourier Transformation Suggested as a Hyperdifferential Operator 

One further consequence of the construction of the harmonic oscillator 
wave functions 'Yn(q) as functions which are self-reciprocal under Fourier 
transformation, Eq. (7.167), is that, as eigenfunctions of the operator 011" in 
(7.171), 

(IF'f'n)(q) = exp( -i7Tnj2)'Yn(q) = exp[ -!i7T(o-JIIt- !)]'Y11(q). (7.196) 

The last term is an exponentiated operator with the action of the Fourier 
transform on all elements of the '¥-basis. As this basis is dense in the space 
of generalized functions, the action (7.196) will extend weakly to it. We can 
thus write the Fourier (integral) transform as the hyperdifferential operator 

(7.197) 

This equality is valid if the functions acted upon are '6'1 oo functions. For 

Table 7.4 A Function and Its Harmonic Oscillator Partial-Wave Coefficients 
under Some Operators and Operations 

Operation f(q) fn'f! 

Linear combination af(q) + bg(q) afn'f! + bgn'f! 

Complex conjugation f(q)* j~'fl* 

Inversion f( -q) ( -1)"/n 'f! 

Differentiation df(q)fdq [(n + 1)' 12/n'f!+ 1 - n112/n'f!-1]/2112 

Multiplication qf(q) [(n + 1)112/n'f!+ 1 + n112/n'f!- d/2112 

1 ( d 2 ) - -- + q 2 - 1 f(q) 
2 dq 2 

nfn'f! 

Fourier transformation ](q) ( -i)"fn'f! 
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2"2(9i') or generalized functions, inner products with '6'""' test functions must 

be taken in order to give meaning to this expression. 

In Part IV we shall give a unified description of hyperdifferential 

expressions such as (7 .193) and (7 .197). 

7.5.11. The Quantum Repulsive Oscillator and Its Wave Functions 

The second theme to be presented in this section on oscillator wave 

functions is a short analysis of the solutions of the differential equation 

IHI'x,Jq) = 1-.x)\(q), (7.198a) 

IHJ':= ~(P2 _ ~J2) = -~ (~22 + qz). (7.198b) 

Equations (7 .198) resemble the harmonic oscillator equations (7.170)-(7.171) 

except for the sign of the 0 2 term. The operator IHl' is the Schrodinger 

Hamiltonian for the repulsive quantum oscillator system, whose potential 

energy -q 2 repels the particle from the origin. Some of the reasons to be 

interested in the solutions of (7.198) are the following: (a) They represent a 

neat application of Fourier transform theory, similar to the Airy function 

solution of (7.61)-(7.64), the free-fall (linear potential) quantum system. 

(b) Properties of orthogonality and completeness of the set {xi\( q )hE&l, to be 

discussed in Section 8.2, will hinge on this derivation. (c) The repulsive 

oscillator, together with the linear potential, free-particle, and harmonic 

oscillator quantum Hamiltonians, constitutes a basis for the class of quadratic 

operators ~ = aP 2 + bQP + c0 2 + diP + eQ + f~, a, ... ,f E '6', whose 

Green's functions constitute the integral kernels of the linear canonical 

transforms of Part IV. 

7.5.12. Finding the Repulsive Oscillator Wave Functions 

Straightforward Fourier transformation of the differential equation 

(7.198) is not conducive to its solution since from (7.57) IF~riF- 1 = -~r, so 

no simplification is gained. If we could rid ourselves of the q 2 term in (7 .198b) 

and replace it by, say, q, dfdq, or qdfdq, the Fourier method would reduce the 

degree of the differential equation as was done in (7.61). A change of function 

could achieve this: we let x)\(q) = exp[~(q)h(q) and, exp[~(q)] being self

reproducing under dfdq, we arrange ~(q) so that the second derivative cancels 

the troublesome q 2 term. Setting ~(q) = cq 2 , with cas yet undetermined, 

1 [ d 2 d l IHI'x)\(q) = - 2 exp(cq 2) dq 2 + 4cq dq + 2c + (4c2 + l)q 2 vl\(q). (7.199) 
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If, now, 4c2 + 1 = 0, i.e., c = ai/2, a = ± 1, the differential equation which 
v11(q) has to satisfy is 

[IP>2 + 2aii)IP> - (2A. + ai)]v1Jq) = 0, (7.200) 

which is amenable to simplification by Fourier transformation. Applying IF, 
we find 

[11)2 - 2a!P>il) - (2.:\ + ai)]ii11(p) = 0; (7.201a) 
i.e., 

(7.201b) 

The solutions for this equation have the form pa exp(bp2) with a = -! - ia.:\ 
and b = ia/4. Equation (7.201 b) is singular for p = 0, so the solutions for 
p > 0 and p < 0 are uncoupled and independent. Let these be chosen as 

where 
ii11 ±(p) = (27T)- 112 p-;_ 112 - 1" 11 exp(iap2/4) = ii11 "'( -p), (7.202a) 

{ p, p > 0, 
P+ := 

0, p ~ 0, 
{ 0, p ~ 0, 

p ·-- .- -p, p < 0. (7.202b) 

We shall now set a = I. The a = -1 case follows similarly. Retracing our 
steps through the inverse Fourier transform and the change of function 
involving exp(iq 2/2), we find 

Xll ±(q) = 2ili/2(27T)-1 f_~ dpp;_1t2-ill exp[i(p2j4 + pq + q2f2)] = XII"'( -q), 

(7.203a) 

where we have introduced a phase 211112 into the definition for later con
venience. A change of variable p = 2 exp(i7T/4)z112, the Taylor series expan
sion of exp(ipq ), and Euler's integral form for the gamma function (Appendix 
A) allow (7.203a) to be written as a series: 

"' x11 ±(q) = C11 exp(iq 2/2) L: [ ± 2 exp(3i7T/4)q]nr(n/2- iA/2 + -!-)fn!, 
n=O 

(7.203b) 

(7.203c) 

It can also be put in terms of Whittaker's form of the parabolic cylinder 
function (see the special function tables of Erdelyi eta/. [1968, Vol. 2, p. 119, 
Eq. (3)]): 

X11 ±(q) = C~Dill-1t2( + 2112 exp(3i7T/4)q), 

c~ := exp(i7T/8)2- 3147T- 1 exp(7TA/4)r(I/2- i.:\). 

(7 .203d) 

(7.203e) 

For a = -1, the expressions for x11 +(q) and X11. -(q) are interchanged. 
The function xt (q) is shown in Fig. 7.11. The overall asymptotic behavior 
I q I » 1 is given by the exponential factor for q in (7.203a), namely x11 ±(q) "' 
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Fig. 7.11. Repulsive oscillator wave functions x" +(q) for values of..\ between 2 (top) and 

-2 (bottom). We show the real, imaginary, and absolute values of this 

function by heavy dotting, light dotting, and continuous plot. The dotted 

parabola extending downward from ..\ = 0 represents the repulsive oscillator 

quantum potential. "Inside" this region, the quantity q 2 /2 + ..\is negative, 

so the curvature of x" +(q) is proportional to the function; i.e., solutions are 

damped. "Outside" this region, q 2 /2 + ..\ is positive, and the solutions 

oscillate. 
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exp(iq 2/2). The function thus oscillates with strongly increasing rapidity. 
The repulsive functions (7.203) are neither in 2'2(fJi) nor in 2 1(fJi). They 
will be seen to constitute, nevertheless, a complete orthonormal basis-in the 
Dirac sense-for the Hilbert space 2 2(fJi) . 

Exercise 7.60. Follow the procedure (7.198)- (7.201) in order to find the 
harmonic oscillator wave functions as solutions of (7.170)-(7 .171) by the use of 
the Fourier transformation. 

7.5.13. Alternative Path: Fourier Transformation of q ~' r Complex 

Another way to find the repulsive oscillator wave functions (7.203), 
which will provide an alternative form for the solutions of (7.201) equivalent 
to those considered from (7.202) onward, is to see the function ii )\ ±(p) as 
the product of p ± 112- i l\ and a Gaussian of imaginary width exp(ip2/4). The 
inverse Fourier transform will thus be the convolution of the inverse Fourier 
transforms of the factors. 

Exercise 7.61. Show that the formula (7 .22) which finds the Fourier trans
form of a Gaussian Gw(q) of width was w- 112G11w(P) holds for complex w as 
well as long as Re w ;;;, 0. This involves a change of variable q ' = w -l f2q for 
complex w which inclines the path of integration to an angle - t arg w . See 
Fig. 7 .12. This integral can be evaluated by complex contour integration for 
jarg wl < TT/2 and as a limit outside the integral for w pure imaginary. For the 
factor under discussion, 

exp(ip2/4) = h 112 exp(iTT/4)G2;(p); 

the inverse Fourier transform is thus 

(7.204a) 

(IF - 1G2;)( q) = (2i) -1!2 G112,( q) = (27T) - 112 exp(- iq 2). (7.204b) 

We always mean i = exp(iTT/2), lest multivaluation problems appear. 

The calculation of the inverse Fourier transform of p±112- i )\ is a more 
complicated affair. To begin the excursion, let us calculate the Fourier 
transforms of q + t and q _ ', where r is a complex number and q ± is defined as 

~ 

.· 

Fig. 7.12. "Bow-tie" contour deforma
tion . Shaded areas indicate the 
quadrants where the Gaussian 
integrand diverges for I q I ---+ oo . 
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Fig. 7.13. "Sector" contour deformation. 
Shaded half-plane indicates 
asymptotic divergence. 

arg (e+ip) 

in (7.202b). To avoid integration contours at the edges of the convergence 

regions, we shall first multiply the function q +' by a decreasing exponential 

0c(q) := exp(-cq) and q_' by 0c(-q) = exp(cq), c > 0: 

[IF(q±'0c( ± q))](p) = (21r)- 112 1: dq(q±)'exp[-q(±c + ip)] 

Joo expi(c±ip) 

= (27T)- 1 ' 2(c ± ip)_'_ 1 
0 

dzz' exp( -z), (7.205a) 

where we have effected a change of variables z = q( ± c + ip). The integral 

in (7.205a) is thus taken along a ray in the direction of arg(c ± ip) which lies 

in the region of convergence of the integrand, Re z > 0, i.e., for c > 0 

(Fig. 7.13), and which by Cauchy's theorem equals the same integral along 

the positive axis. This integral can then be recognized as Euler's integral 

formula for the gamma function f(r + I) (Appendix A). For ± i = 
exp( ± i1rj2), the transform we are looking for is the limit of (7.205a) as 

c ___,. 0 +, namely, 

(iFq ±')(p) = (27T) - 112 exp[+i(r + 1)7T/2]f(r + 1) lim (p + ic)-'- 1 • 
c--+0 + 

(7.205b) 

Expressions of the type lim , ~ 0(p + ic) - n were dealt with in Section 7.4 for 

integer n [Eqs. (7.140)]1eading to derivatives of the Dirac o. For complex n

call it v-the situation is not so extreme but does require care. As the function 

is multivalued, consider 

(x + iy)• = lx + iyi•exp[ivarg(x + iy)] (7.206a) 

where the branch cut runs along the negative x-axis . For x > 0 the limits 

y ___,. O± can be taken without problem, yielding I xi• exp(iv arg x) = x•. For 

x < 0, however, we have to specify that we approach the negative axis from 

above or below (Fig. 7.14): If y___,.o+, arg(x + iy)___,.7T, while if y___,.o-, 

Fig. 7.14. Real limits of the complex 
power function . A branch cut 
extends along the negative real 
axis. 

/ branch cut 

y 

0 
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arg(x + iy)-+ -1T; thus (7.206a) becomes /x/" exp( ± izm). Introducing now 
the functions x ± defined as in (7.202b), 

lim (x + iy)v = x+v + x_"exp(+iv1T) 
Y-+O+ 

(7.206b) 

for v =F -1, -2, .... [The analysis of (7.206) as v becomes a negative integer 
can be found in Gel'fand et a!. (1964, Vol. I, Section 4.4).] We can now 
put (7.206) into (7.205b) for v = -7 - 1 and obtain the Fourier transform 
of the q ±' functions, which can be conveniently written in matrix form: 

IF + = (27T)- 112r(7 + 1) . . ( 
q ') (- i exp(- i7T7/2) 
q _ r z exp(l7T7/2) 

i exp(i7T7/2) ) (P :;_' - 1). 
-iexp(-i7T7/2) p:'- 1 

(7.207) 

From a development parallel to the above, or by inverting (7.207) for 
7~-7- 1, we find 

IF-1 + = (27T)-1'2r(7 + 1) . . (p ') (i exp(i7T7/2) 
p _ r -z exp( -17T7/2) 

-i exp( -i7T7/2)) (q:;_'- 1). 
i exp(i7T7/2) q:' - 1 

Exercise 7.62. Verify that (7.25) holds for (7.207)-(7.208), namely, 

(IJ=Zq±')(q') = (-q')±' = q'~. 

(7.208) 

(7.209) 

You will come to use the gamma function reflection formula (A.9a). The matrix 
forms (7.207)-(7.208) are quite handy. 

Exercise 7.63. The functions q ±' are solutions to the differential equation 

(7.210) 

Show that, under Fourier transformation, Eq. (7.210) behaves as expected from 
(7 .207)-(7 .208). 

7.5.14. Completion of the Alternative Path 

Having found Eqs. (7.207) and (7.208), which will appear later in 
various contexts, we return to our original aim, namely, the alternative 
calculation of the repulsive oscillator wave functions as the convolution of 
two inverse transforms, (7.204) and (7.208), with the phase defined in (7.203a), 

x" ±(q) = 2W2 exp(iq 2/2)(1F- 1u,._ ±)(q) 

= 2112+ih/2 exp(i7T/4) exp(iq2/2)[1F-l(p~112-ihG2;)](q) 

= 2W2(27T)-112 exp(iq2/2)[(!F-1p~l/2-i") * G112;](q). (7.211) 
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Equation (7.208) can be now used for T = -! - {A, and, after a few simpli
fications, one arrives at an alternative expression for (7.203) given by 

X.>. *(q) = 2lAI2(27T)-3'2r(t _ iA) f_"'"' dq'(a,. *q'.;1/2-i.>. + b,. *q'_-112-t") 

x exp[i( -q'2 + 2qq' - q2/2)], (7.212a) 

where 
a,.+ = i exp(1r>..j2) = b,.-, 

The repulsive oscillator functions have appeared little in the literature. The 
reason for this seems to have been the fact that their explicit expression is not 
very compact and the evaluation of integrals involving them would require 
the use of arduous analytical calculations. In Part IV we hope to convince the 
reader that integral transform techniques are available to reduce their 
evaluation to much simpler analysis involving only matrix algebra. 

7.5.15. Fourier Transformation of the Repulsive Oscillator Wave Functions 

We can bind together the two expressions for the repulsive oscillator 
functions (7.203) and (7.212) if we consider the problem of finding the 
Fourier transform of the X.>. *(q). Far from being just a messy calculation, 
this will show several interesting relations which will be used in Part IV. We 
remarked before that IFIHI'IF- 1 = -IHI', so we can expect that IFx,. * will be a 
linear combination of the x::,.. From Eq. (7.203) and by using various 
formulas for Gaussians, their Fourier transformations, and convolution, 

(1Fx11 *)(p) = 21 ~. 12(27T)112 exp(i7T/4)[1F(G1 -IF- 1u,. *)](p) 

= 2iA12(Glli * G,. *)(p) 

= 2ii\/2(27T)-1 exp(i7T/4) L: dp'p';;I/2-il\ 

x exp[i(-p2/2 + pp' - p'2/4)]. (7.213) 

It will be observed that the integral, although akin to (7.203), has the same 
sign of the Gaussian exponentials as (7.212) for ->...By a change of variables 
q' := p'/2, one obtains separately the two summands of this equation, which, 
after some cancellations and rearrangements, read, in matrix form, 

exp(1r>.j2) ) (x:!: 11) 

-iexp(-7T>..j2) x:,. , (7.214a) 

(7.214b) 

Exercise 7.64. Verify that (7.214) yields 

(Px~.±)(q) = X1. ±( -q) = X" "'(q), (7.215) 

as was done in Exercise 7.62, thereby checking that (7.25) holds properly. 
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It might appear amusing that the matrix form (7.214) matches that of 
(7.207) for r = --!- - iA, that is, the Fourier transform properties of the pair 
Xt. ± are the same as those of q;_l!2-it.. This fact is neither isolated nor acci
dental. As will be brought out in Part IV, what happens is that the Xt. ±(q) 
are unitary integral transforms of q-;_ 112 -i". The transform in question has as 
its kernel the exponential factor in the integral (7.203a). We have seen that 
this transform and the Fourier one commute. In fact we shall come to prove 
that Xt. ± = IF- 1 12q;_ 112 -i". As the power functions are simpler to handle 
than the parabolic cylinder ones, it is more convenient to work in the trans
form space of functions and finally transform back the results. See Exercise 
9.7. 

As stated before, the repulsive oscillator functions are orthonormal in 
the sense of Dirac and complete in 2 2(9t'). Orthogonality is easy to prove: 

Exercise 7.65. Using the self-adjoint operator IHI' and the defining equation 
(7.198), show that (x,. ±, xt) = 0 for A :/= A'. 

Exercise 7.66. Using the Parseval formula and the fact that Xt. ±(q) are the 
Fourier transforms of v,. ±(p), with disjoint supports, show that (Xt. ±, x:-) = 0. 

Dirac orthonormality will be discussed in Section 8.2, while complete
ness must wait until Part IV. Generating functions and other properties will 
appear in various sections. 

7.6. Uncertainty Relations 

A given function and its Fourier transform exhibit a number of comple
mentary properties. We have seen time and again that a very "peaked" 
function has a "broad" transform and vice versa. The precise statement of 
this reciprocal width relation will be given. It constitutes, when applied in 
quantum mechanics, the fundamental Heisenberg uncertainty relation. 

7.6.1. General Discussion 

The Fourier transform of a rectangle function of width e [Eqs. (7.4) and 
(7.5)] is proportional to sin(pe(2)(p. The spread or width of the latter can be 
defined roughly as that of the central peak of the function (Fig. 7.1) between 
the values -7T and 7T of the sine argument; that is, p = ± 27T(e. The width of 
the rectangle function transform is thus 47T/e. The product of the widths of 
the two functions is then 47T-a constant independent of e. The narrower the 
rectangle, the broader its transform and vice versa. As a second example, the 
Gaussian bell function of width w, Eq. (7.20), has a Gaussian of width Ijw 
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as its Fourier transform. The product of the widths defined in this way is 
unity. 

These examples suggest that a relation of the kind width(f) x width(f) = 
constant should exist-if we can agree on a general definition of what the 
width of a function means. As we shall see, there are at least two working 
definitions. One is particularly important as it gives rise to the quantum
mechanical uncertainty relation between position and momentum measure
ments recognized by Heisenberg. 

7.6.2. Moments 

Given a function f(q), we associate with it, using the language of 
probability theory, a positive distribution function Jf(q)j 2. The rth moment 
of such a distribution is defined to be 

(7.216) 

The first moment q 1 is the average of lf(q)j2, which can be interpreted as the 
"center of gravity" of the area under the curve. If the function f(q) has 
definite symmetry under reflections through the origin, its average q 1 is zero. 

Exercise 7.67. Show that if a function with zero average is displaced by a, 
the average of the displaced function will be a. 

7.6.3. Dispersion and the Heisenberg Uncertainty Relation 

The second moment q2 represents the peaking of the distribution 
Jf(q)l 2 around the origin. For the Gaussian function we can use (7.23) to 
find its q2 as IIOGwii 2/IIGwll 2 = w/2. For the rectangle function of width e, 

the second moment is e2/12. Second moment and "intuitive" width are thus 
not the same. In particular, a displaced Gaussian will have a larger second 
moment than its undisplaced version. It is thus convenient to define the 
dispersion /:;,. 1 of a functionf(q) as the second moment of lf(q)l 2 with respect 
to its average, i.e., 

~:;,., := [1: dq(q- ql)21J(q)12]/[1: dqjj(q)l2] 

= 11(0 - ql)fll 2/llfll 2· (7.217) 

It describes the peaking of f(q) independently of the location of the peak. 
We shall prove the main result of this section (Section 7.6), which can be 
stated as follows: the product of the dispersion of a function f and that of its 
Fourier transform f has a lower bound of value ! : 

~:;,.,~:;,.? ~ 1/4. (7.218) 
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7.6.4. Proof of the Uncertainty Relation 

It is sufficient to consider functions whose average is zero. If this is not 
the case, we can always translate f( q) by q 1 without changing its dispersion. 
The Fourier-transformed function j(p) will be multiplied then by a phase 
exp(ipq 1) which also leaves its dispersion invariant. Assuming now that at 
least the first derivative off is in !1'2(8?) and q 1 = 0 for f and f, we write 

jjfjj411tl11 = I!Ofi!21!11JfJJ2 

= II or 11211 IP'fJI 2 

~ I cor, IP'f)J2 

[by (7.57)] 

(Schwartz inequality) 

[jzj 2 ~ (Im z)2] 

(Q and iP' self-adjoint) 

~ -!-J(Of, IP'f) - (IP'f, Qf)j2 

= -1-J(f, QIP'f) - (f, IP'Qf)j 2 

= -!-J(f, [Q, IP']f)j2 = tllfll 4 [commutator (7.59)], (7.219) 

which proves (7.218). 

Exercise 7.68. Show that had we kept (q - q1 ) 2 and (p - p 1 ) 2 in the deriva
tion (7.219) the same final result would be obtained. 

7.6.5. Dispersion of Coherent States and of Oscillator Wave Functions 

Let us verify the uncertainty relationship for some of the examples at 
hand. For the Gaussian function G0/q) we saw that L1aw = w/2, as 
Gw(P) ~ G11w(p), L1aw · L15w = -!-.For this function, therefore, the lower limit 
of the uncertainty relation (7 .218) is attained. For the coherent states (7.188), 
essentially rescaled and translated Gaussians of unit width, the same is true: 

C E 'G'. (7.220) 

For the harmonic oscillator function of Section 7.5 (see Fig. 7.10), the 
dispersion can be calculated as follows: 

11'!' n = ('I' n• 0 2'1' n) = !('I' n• 0 2'1' n) + !(tF n> 1P'2'iJ n) 

(7.221) 

where we have used their properties under Fourier transformation and the 
fact that they are eigenfunctions of the operator IHI in (7.171). The dispersion 
of the '¥n(q) and their Fourier transforms is thus proportional ton. (Recall 
Exercise 7.59.) 

7.6.6. Minimum Dispersion States 

The Gaussian function can be shown to be the only function-up to 
translation, normalization, and dilatation-which attains the minimum 
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allowed by the uncertainty relation (7.218). For the equality in (7.218) to 
hold, (7.219) requires (a) that the Schwartz inequality be valid as an equality, 
i.e., that Qf be parallel to IP'f, and (b) that (Qf, IP'f) be pure imaginary. The 
first requirement implies that f(q) satisfies df(q)jdq = icqf(q) for some 
constant c E ~. which means that f(q) = c' exp(icq 2/2), c' E ~- The second 
requirement then narrows the choice to Re c = 0. Finally, if the function is 
to be square-integrable, Im c > 0. We are thus left with the Gaussian bell 
function, and, through (complex) translations, with all coherent states. 

7.6.7. Equivalent Width 

We must remark that the proof of the uncertainty relation required that 
the first derivative of f(q) be square-integrable. This bars the preceding 
analysis from applying to the rectangle function. In fact, the evaluation of 
6-R requires the integration of p 2 times [sin(t:p/2)/p]2 over p E :Jil, which is 
infinity. Yet, as we argued at the beginning of this section, some form of 
width reciprocity does hold for this pair of functions. Another definition 
which embodies the intuitive concept of" broadness" of a function is that of 
equivalent width: 

Wt := ftloo dqf(q)/f(O). (7.222) 

[Compare with Eqs. (4.69) for Fourier series.] The quantity (7.222) gives the 
equivalent width of a rectangle function which has the same area as the area 
under the curve f(q) with height f(O). The equivalent width can easily be 
zero or infinity if J(O) = 0 or f(O) = 0, so the estimate has to be made 
judiciously, translating f(q) if necessary. The complementarity relation 
afforded by the definition (7.222) is 

(7.223) 

Equation (7.223) can be proven by noting that the numerator of each factor 
equals (21r)112 times the denominator of the other. Checking: For the rectangle 
function of width t:, WR = t:, while by using (7.10b), Wii = 21Tjt:. For the unit 
Gaussian of width win (7.20), WG = (21rw)112• 

Last, as our estimation of the "width" of the 'Fn(q) in Exercise 7.59 
suggests, other definitions of width may be set up. 

7.6.8. Complementarity and Operator Noncommutation 

Complementarity relations between properties of a function and its 
Fourier transform are particularly suited to describe the observed facts in 
quantum mechanics. Although this is not the place to expound the general 
theory and supporting data, we shall try to indicate where uncertainty rela
tions of the Heisenberg type appear by giving a few simplified rules of the 
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game. (a) Replace a classical observable S(q, p) function of position q and 
its canonically conjugate momentum p by a self-adjoint operator in 2 2(£1i), 
S(Q, IP>), usually in the SchrOdinger representation given by (7.55)-(7.56). 
(b) The state of a system is described by a wave function rp(q), where l!f(q)l 2 

represents the probability density of finding the particle at the position q; 
hence 11411 = 1 since the probability of finding the particle in the whole of !1i 
is unity. (c) The momentum-space description of the state is given by ~(p). 
(d) The mean or expected value of the observable S when the system is in the 
state 4 iss= (4, §4). (e) There is a dispersion in the results of measurements 
on S given by il"'(S) := II(§ - s)4ll 2• Note that if 4 happens to be an 
eigenstate of§ with eigenvalue u, then s = u and Llw(S) = 0. 

It is in the last point that we establish contact with our derivation (7.219), 
for assume that two quantities represented by operators § and IR are subject 
to simultaneous measurement. What quantum mechanics tells us is that the 
results of the two measurements cannot be simultaneously dispersionless 
unless § and IR commute. The proof will clarify the statement further: by a 
process similar to (7.219) and by settings and f to zero as justified by Exercise 
7.68, 

il"'(S)·ilw(R) = 11§4II 2 II1R4II 2 ;;:: 1(§4, IR4)1 2 ;;:: !1(4. [§, IR]4)1~ (7.224) 

The product of the dispersions of the two measurements is thus bounded 
from below by the expectation value of[§, IR] when the system is in a state 4. 

For measurements of position and momentum the representing operators 
are Q and Jjjpl for which (7.59) holds. The actual value of the left-hand side 
depends on the state 4, but a lower bound is determined by their commutator 
expectation value, i.e., li/4. 

Other observables whose dispersion product is bounded by (7.224) are 
the components of three-dimensional angular momentum. There are further 
uncertainty relations between physical quantities such as angle-angular 
momentum and time-energy whose form, however close to (7.224), does not 
stem from this argument alone. 

A good account of quantum mechanics and the role of uncertainty 
relations can be found in Messiah (1964, pp. 129-139). Some hard-core 
research articles on uncertainty relations other than the basic Heisenberg 
one have been written by Susskind and Glogower (1964), Carruthers and 
Nieto (1965, 1968), and Jackiw (1968). 
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Integral Transforms Related 
to the Fourier Transform 

Fourier analysis can take different forms as we adapt it to various problems 
at hand. The main results of the Fourier integral theorem are used to justify 
continuous partial-wave analyses in terms of functions other than the 
oscillating exponential ones. Section 8.1 presents the bilateral and the more 
common unilateral Laplace transform where the expanding functions are the 
decreasing exponential functions exp(pq). In Section 8.2 we expand functions 
in terms of powers x~q- 112 (bilateral Mellin) or of powers xq (common 
Mellin) as a continuous analogue of the ordinary Taylor series expansion. 
Section 8.3 deals with Fourier transforms of functions of N variables and 
applies them to the general solution of the N-dimensional elastic-diffusive 
equation. In particular, the three-dimensional wave and general heat equations 
are treated. Hankel transforms (Section 8.4) use the Bessel functions as the 
expanding set and arise out of N-dimensional Fourier transforms of functions 
of the radius. The elastic-diffusive equation solutions are completed, and the 
difference between odd and even dimensions is pointed out. We list, finally, 
several transform pairs which use cylindrical functions as their expanding set. 
Under the title of" other" integral transforms, in Section 8.5 we give a rough 
outline of the Sturm-Liouville approach. This is applied in particular to 
transforms using Airy functions. Other approaches lead to Hilbert and 
Stieltjes transforms. All sections are basically independent of one another 
except for Hankel transforms, which are built out of N-dimensional Fourier 
transforms. Those transforms which are only briefly mentioned in the text 
are accompanied by a bibliographical survey. 

333 
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8.1. Laplace Transforms 

The Laplace transform is essentially the Fourier transform on the 
imaginary axis of the transform argument. The direct implementation of this 
idea leads to the bilateral Laplace transform. The more commonly known 
version of this transform, the unilateral Laplace transform, is obtained for 
causal functions, i.e., those which are zero on the negative half-line. The 
Laplace transform, formulated in this way, allows in a rather natural way 
for the introduction of the initial conditions in the solution of certain 
differential equations. 

8.1.1. Bilateral Laplace Transforms 

Consider the Fourier transform pair, Eqs. (7.1). By setting p =:-is, the 
pair now reads 

Jfoo 

(IL8 1f 8 L)(q) := f(q) = -i(27T)- 112 -loo dsfBL(s) exp(qs), (8.la) 

(IL8 f)(s) := JEL(s) = (277)- 112 L: dqf(q) exp( -qs), (8.1b) 

where we have also put f 8 L(s) := J(- is), thus defining JEL(s) as the bilateral 
Laplace transform of f(q). In terms of the new transform functions, the 
Parseval identity appears as 

f "' fj"' 
-"' dqf(q)*g(q) = -i -too dsJBL(s)*gBL(s). (8.lc) 

We note that not every function which has a Fourier transform is bound 
to have a Laplace transform as the integral (8.1 b) may well diverge. This 
happens whenf(q) behaves asymptotically like any finite negative power of q 
since the exponential kernel dominates the growth of the integrand. 

8.1.2. Exponential Growth 

To describe the regions in the s-plane where (8.1 b) converges, it is con
venient to introduce definitions concerning asymptotic exponential growth. 
If there exist constants k', n', and c' such that for I q I -+co 

lf(q)l < k' exp(c'lqln') (8.2) 

and if n and c are the minima of the n' and c' for which (8.2) holds, f( q) is 
said to be of order n, type c, and growth (n, c). When we consider q real, we 
may examine separately the cases q-+ +co and q-+- co. 

The growth of a Gaussian G,,lq) ~ exp( -q 2/2w) is thus (2, - Re(1/2w)). 
A simple exponential function exp(aq ), a E '6', will be of growth (1, Rea) for 
q > 0 and (1, -Rea) for q < 0. Constants are of growth (0, c). If two func
tionsf1(q) and/2(q) are of the same order n, the type of their product is the 
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sum of their types: c1 + c2 . If their order is different, say n1 > n2 , the growth 

of their product is (n1 , c1). 

For the bilateral Laplace transform of a (locally integrable) function 
f(q) to exist, it is sufficient that the integrand in (8.1b) be of growth 

(n > 0, c < 0). Due to the factor exp( -qs) of growth (1, + s) for q ~ 0, 
s E ~. we can contemplate three cases for the growth (n1 +, c1 +) of f(q) at 

q--7-+00: 

(a) If n1 < 1, the growth of the integrand will be determined by that of 
the exponential factor, which is (I, -s). 

(b) If n1 = 1, the integrand growth will be (1, c1 + - s ). 

(c) Ifn1 > 1, the growth will be (n 1+, c1 +). 

At q --7-- oo, let the growth of f(q) be (n1 -, c1 -). In the three cases the inte
grand growth will be as follows: 

(a') (1, s) for n1 - < 1; 
(b') (1, c1 - + s) for n,- = 1; 
(c') (n1 -,c1 -)forn1->l. 

The q > 0 part allows integration for (a) Res > 0, (b) Res > c1 +, and 

(c) all s as long as c1 + < 0. The q < 0 part, independently, allows integration 
for (a') Res > 0, (b') Res < - c1-, and (c') all s as long as c1 - < 0. The 

bilateral Laplace transform f 8L(s) will thus exist for some region in the 

complex s-plane only if both parts permit integration. Conditions (a) and (b) 
restrict the allowed region to a right half-plane, while (a') and (b') restrict it 
to a left half-plane (Fig. 8.1). Only if the two half-planes have a nonempty 

a 

r 
~ 

: c" 
' ( ~ 

b 

r 
~ 

. -:-=· 

- cf : 
. ~ 

Fig. 8.1. Restrictions on the values of the 
complex variable s where the 
bilateral Laplace transform (8.1 b) c 
exists. (a) For q > 0; (b) for 

~ 
q < 0. Shaded areas indicate 

r 
that the integral diverges. For Cf -cf ; 
the overlap between the two 
allowed regions (c), the trans-
form exists. 
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overlap band willf8 L(s) exist, and then only within this band. Cases (c) and 

(c'), when allowed, impose no restrictions on the s region. 

8.1.3. Examples 

As an example, consider £ 11(q) := exp(clqi), cE~. The growth of this 
function in both directions is (1, Re c); hence the bilateral Laplace integral 

(8.lb) exists, according to cases (b') and (b), for -Re c < Res< Re c, i.e., 

a vertical band in the complex s-plane centered about the imaginary axis. 

It is 

E1fL(s) = (27T)- 112{1°"' dq exp[ -q(s- c)] + L"' dq exp[ -q(s + c)]} 

= (27T)- 1' 2 [1/(s +c)- l/(s- c)], -Re c < Res< Re c. 

(8.3) 

The transform function E1fL(s) is thus seen to have poles at s = c and 

s = - c which lie on the boundary of the existence band and determine its 
width. Perhaps surprisingly, the function (8.3) appears to be a well-defined 

function throughout the complex s-plane. Beyond the band boundaries, this 

analytic continuation of E1fL(s) is not the bilaterial Laplace transform of any 

function. Yet it can be used for contour integration purposes. Consider the 

task of finding the inverse transform (8.la) of (8.3): Fig. 8.2. The integral 

- i(27T) - l r~co ds[l /(s + c) - l f(s- c)] exp(qs) (8.4) 

can be found for q > 0 by closing the integration contour counterclockwise in 

the Res < 0 half-plane and using the familiar Cauchy and Jordan results. 

a b 

Fig. 8.2. Regions of existence of the bilateral Laplace transform (8.3) (unshaded). 

Asterisks indicate the locations of the poles of the function. On calculating the 

inverse Laplace transform (8.4), the integration can be performed for (a) q > 0 

and (b) q < 0 using the analytic continuation of the function and complex 
contour integration techniques. 
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a b 

* 
0 0 

Fig. 8.3. Complex integration contours used in calculating the inverse bilateral Laplace 
transform in Eq. (8.6) for (a) Re c < 0 and (b) Re c > 0. 

As the contour will enclose the s = - c pole of residue exp[q(- c)], the result 
is exp( -qc). When q < 0, the contour may be closed in the Res > 0 half
plane, the result being, as expected, exp(qc). The reconstitution of the 
original function for q E tJi is thus exp(cl qi). 

The convergence band in the s-plane must, however, be specified. It is 
part of the definition of the transform function. To illustrate this, consider 
the two functions 

) {
exp(cq), q > 0, 

E+(q := 
0, q ~ 0, 

E_(q) := {
0, q ~ 0, 

exp(cq), q < 0. 

Performing the integration in (8.1 b), we see that 

E~L(s) = (br)- 112(s- c)-I, 

Ef!.L(s) = -(21T)- 112(s- c)-\ 

Res> Rec; 

Res< Re c. 

(8.5) 

(8.6) 

If we are asked to perform the inverse bilateral Laplace transform (8.la) of 
(21T)- 1 ' 2(s- c)- 1-without specifying the existence region-following the 
usual complex contour integration techniques (Fig. 8.3), we would come up 
with E+(q) if Re c < 0 or with E_(q) if Re c > 0. 

Exercise 8.1. Show that the preceding paradox is resolved when we note that 
in taking the bilateral Laplace transform of E+(q) for Re c > 0 or that of £_(q) 
for Re c < 0 we are actually violating the conditions of the Fourier integral 
theorem. The inverse transform integrates them over the nonexistence region of 
the functions. 

8.1.4. Unilateral Laplace Transforms 

It might appear that the change of variables p =: -is involved in defining 
the bilateral Laplace transform out of the Fourier transform has little new to 
offer us in the way of techniques for solving problems which do not yield to 
the Fourier methods. The "paradox" involved in (8.5)-(8.6), however, 
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suggests a fruitful restatement of the transform which makes it applicable to 
time evolution of systems by causal functions, i.e., functions which are zero 
for negative values of the argument. The study of these functions and the 
behavior of their Fourier transforms in the complex plane occupied Section 
7.4. Some significant computational and conceptual simplifications are 
obtained by the Laplace transform method. It will allow us to find solutions 
f(q) to differential equations which can exhibit exponential growth (1, c) for 
any finite c-that is, oscillating, damped, or exponentially growing solutions
in terms of the initial conditions at q = 0: f(O), df(q)fdq lq=o, andjor higher 
derivatives according to the order of the differential equation. 

Letf(q) be a function of growth (1, c) in the positive q direction and let 
y > Re c. Build the function 

{
exp( -yq)f(q), q > 0, 

.fr( q) :== f(0)/2, q = 0, 

0, q < 0, 

(8.7) 

which is absolutely integrable. Assuming the other conditions of the Fourier 
integral theorem hold, the Fourier transform of (8.7) is 

}'y(p) = (27T)- 112 L'' dqf(q) exp[ -q(y + ip)]. (8.8) 

We now perform the change of variable s := y + ip and set JL(s) := 
(27T)1':f,(p)-the constant (27T)112 is introduced so as to conform to custom. 
The Fourier transform pair (7.1) thus becomes 

Jy+lex> 

(II.. -lfL)(q) :== f(q) = (27Ti)- 1 y-lro dsJL(s) exp(qs), q > 0, (8.9a) 

(IL.f)(s) := JL(s) = {"' dqf(q) exp( -qs), Res > Re (type f). (8.9b) 

The functionfL(s) is said to be the unilateral Laplace transform-or simply 
the Laplace transform-off( q) and the latter the inverse Laplace transform 
of JL(s ). The Parseval identity is 

f"' dq exp( -2yq)f(q)*g(q) = (27Ti)- 1 JY+Iro dsfL(s)*gL(s), (8.9c) 
Jo y-lro 

where y is larger than the types ofj(q) and g(q). 

8.1.5. On Bromwich Contours 

A few remarks are in order as the following feature of (8.9) might appear 
puzzling: Having introduced an upper bound y for the growth of f(q) into 
the definition (8.7), we end up with an integration contour J;~:: which 
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Fig. 8.4. Existence region (unshaded) for the 
unilateral Laplace transform and inte
gration contour for the inverse trans
form. 
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depends on y but of which we seem to have no clue before the integral is 
performed. Actually we do, as recalling one of the main results of Section 7.4 
will show. Following Eq. (7.126) we proved that the Fourier transform of 
(8.7) is (a) an entire analytic function in the lower complex half-plane 
Imp < 0 and (b) bounded by a constant Cr (as a = 0). As here s = 
y - Imp + i Rep, the function JL(s) will be entire analytic in the right half
plane Re s > y. The value of y is thus a left bound for the region of analyticity 
of the function JL(s). See Fig. 8.4. When we perform the inverse Laplace 
transform (8.9a), the integration path is such that JL(s) is analytic and 
bounded to its right and all singularities are confined to its left. Such integra
tion paths are referred to as Bromwich contours. Clearly, for q < 0, the 
exponential factor exp(qs) in (8.9a) allows us to invoke Cauchy and Jordan 
and close the integration contour with a semicircle at infinity, obtaining 
f(q) = 0 for this region [Fig. 8.5(a)]. For q > 0 the integration requires 
more effort but can usually be dealt with by applying Cauchy and Jordan 
for poles and other techniques for branch cuts [Fig. 8.5(b)]. 

8.1.6. Example 

Consider an example, 

J, ( ) := {qn exp(cq), q > 0, 
n.c q 0, q ~ 0, (8. 10) 

which is of growth (1 , Re c). The construction of its Laplace transform pro-

pole * 
branch cut 

* 
a 

• I 

~t 
' ' Y: Y: 

b 

Fig. 8.5. Bromwich integration contours for the inverse unilateral transform for (a) 
q < 0 and (b) q > 0. A pair of conjugate poles and a branch cut have been 
assumed for the analytic continuation of the transform function. 
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ceeds by (8. 7) with a choice of y > Re c, which makes the function integrable. 
Its Laplace transform can be found by successive integration by parts as 

f/;.c(s) = f' dqqn exp[ -q(s - c)] 

= -(s- c)- 1qn exp[ -q(s- c)JI:'=o 

+ n(s- c)- 1 f'' dqqn- 1 exp[ -q(s- c)] 

= · · · = n! (s- c)-n L, dq exp[ -q(s- c)] = n! (s- c)-n-1, 

Re(s - c) = y - Re c > 0, (8.11) 

i.e., it is a function with an (n + I)-fold pole at s = c. The integration (8.11) 
is properly valid only for Res > Re c, so the inverse Laplace transform along 
a vertical path at y is inside this region, with fL(s) free of singularities to the 
right of it. The function fL(s ), however, possesses an analytic continuation 

to the whole complex s-plane which allows its inverse transformation by 
means of the Cauchy and Jordan results. The former states that 

(8.12) 

while the latter tells us that for q > 0 we can set up a Bromwich contour with 
vanishing contribution at the infinite semicircle, so that.f(q) is regained as 

fy+i ro 

(2ni)- 1 ds[n! (s- c)-n- 1 ] exp(sq) 
y-ico 

= (2ni)- 1n! fds(s- c)-n- 1 exp(sq) 

dn I = dsn [exp(sq)] s=c = qn exp(cq). (8.13) 

In Table 8.1 we have listed some useful Laplace transform pairs. Much more 
extensive tables can be found in the Bateman manuscript project (Erdelyi et al. 

(1954, Vol. I, Chapters IV and V) and in a recent table by Oberhettinger and 
Badii (1973). 

In most applications it is the inverse Laplace transform of a function 
which yields the final solution to the problem. Thus it is the second part of 
the above example which should be of primary interest. It tells us that the 
inverse transform of a simple pole (n = 0) at s = cis an exponential function 
exp( cq) times (n !) - 1 . Pairs of poles at c = a ± ib will thus inverse-transform 

to oscillating functions sin or cos, depending on the relative residue signs. 

Exercise 8.2. Verify the pairs of Laplace transforms of Table 8.1 where 
JL(s) is a function of the kind discussed above. 
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8.1.7. Derivatives and Boundary Conditions 

The second main ingredient in the solution of differential equations by 
Laplace transformation is the way in which derivatives of functions transform 
and initial conditions appear. Assume f( q) is differentiable as many times as 
required and that all its derivatives grow, for q > 0, not faster than (1, y) for 
some common y. Then ifJL(s) is the Laplace transform ofj(q), the transform 
ofj'(q) := df(q)fdq can be found from (8.9b) by integration by parts [in doing 
so we assumef'(q) is continuous on (0, oo); see Exercise 8.4]: 

(llf')(s) = f" dqf'(q) exp( -sq) 

= f(q) exp( -sq)i:'=o + s L"" dqf(q) exp( -sq) 

= -f(O) + s(llf)(s). (8.14) 

The important thing about (8.14) is that (llf')(s) is s(llf)(s)-a result obtain
able by Fourier transformation alone-plus the boundary value f(O) of the 
transforming function. The second derivative is as easy to calculate and 
yields 

(llf")(s) = - f'(O) - sf(O) + s 2(1Lf)(s ). (8.15) 

The case for higher derivatives is included in Table 8.2: The boundary values 
and derivatives up to the order of differentiation minus one appear. For many 
differential equations this is all that is needed to determine the solution 
uniquely. 

8.1.8. The Driven, Damped Oscillator 

As an example where the boundary conditions appear, let us draw 
upon our old driven, damped harmonic oscillator system whose equation of 
motion is 

( d2 d ) M dq 2 + c dq + k f(q) = F(q) (8.16) 

[see Eqs. (2.1) and (7.111), except that here we do not need to restrict c to 
positive values]. Using (8.14) and (8.15), we find the Laplace transform of 
(8.16) to be 

M[ -f'(O) - sf(O) + s2JL(s)] + c[ -f(O) + sfL(s)] + kfL(s) = FL(s). 

(8.17) 
From here we can easily solve for JL(s): 

JL(s) = (Ms 2 + cs + k)- 1{P(s) + [Mf'(O) + (Ms + c)f(O)]} 

:= fFL(s) + fl(s). (8.18) 
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The structure of (8.18) is rather transparent: it contains a "stationary" term 
fFL(s) due to the driving force transform FL(s) plus a transient response to 
the boundary conditions f 8 L(s ). The latter is immediately invertible: the two 
poles of the denominator are located by factoring the expression 

Ms 2 + cs + k = M(s- s+)(s- s_). 

s ± := - r ± ip., r := cj2M, Pe := (p0 2 - r 2)112, 

(8.19a) 

Po := (kJM)ll2, 

(8.19b) 

where we have used the same variables as in (7.113). The inverse Laplace 
transform of f~(s) is zero for q < 0 since the integration path follows any 
abscissa y > r. For q > 0 the integral can be found by closing the Bromwich 
contour around the denominator roots: 

f 8 (q) = (21ri)- 1 f-~~ro ds[(s- s+)(s- s_)]- 1 [/'(0) + (s + cjM)f(O)] 

= -(s_ - s+)- 1 [/'(0) + (s_ + cjM)f(O)] exp(s_q) 

- (s+ - s_)- 1 [/'(0) + (s+ + cjM)f(O)] exp(s+q) 

= exp(- rt){f(O)[cos(p.q) + r sin(p.q)/p.] + f'(O) sin(p.q)/p.} 

= f(O)[cG(q) + MG(q)] + Mf'(O)G(q), (8.20) 

where 

._ {exp(- rq) sin(p.q)jMp., q > 0, 
G(q) .- 0 ,::. 0 

' q"' ' 
(8.21) 

is the Green's function of the system and G(q) its derivative. In obtaining 
this result we have used (8.13) with n = 0 and s ± for c and collected terms. 
The transient response is identical to the corresponding results we have 
previously obtained from (2.10)-(2.13) and (7.115)-(7.122). 

As to the stationary solution termfFL(s) we see that it is FL(s) multiplied 
by the reciprocal of (8.19). Our intuition should tell us that the inverse 
Laplace transform of this product is a convolution-Laplace version-of the 
inverse transforms of the factors. In fact, it is exactly (7.117), namely, 

fF(q) = f dq'F(q')G(q- q'), (8.22) 

with the understanding that the driving force F(q) is, as are all functions, 
subject to unilateral Laplace transformation, zero up to q = 0. 

Exercise 8.3. Starting from the relation between product and convolution 
under Fourier transformation, show that the unilateral Laplace version of this 
correspondence is as given in Table 8.2. Note that the abscissa of the integration 
path must be larger than the type of the factors. 
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Exercise 8.4. Show that if the function f'(q) in (8.14) is discontinuous at 
some point d, its Laplace transform has an extra term involving the discontinuity 
of the function at that point, as shown in Table 8.2. Examine the case where there 
is more than one such point. 

Exercise 8.5. Prove the rest of the entries in Table 8.2. 

The Laplace transform has been used to solve Eq. (8.16) once more. 
In terms of directness and ease, the Laplace methods seems to be preferable 
to the Fourier transform, as the latter does not allow for growing functions 
without requiring Dirac S's. The "cutting" process of Section 7.4 for negative 
q's also involves some effort. For these reasons, the unilateral Laplace 
transform has found wide acceptance as a tool in engineering and electronic 
computation. Texts centering on this method include (among many others) 
those of Gardner and Barnes (1942), Doetsch (1950, 1955, and 1961), and 
Craig (1964). Most books dealing with Fourier transforms will also have a 
chapter on Laplace transforms. The considerable mathematical interest of the 
latter has merited a few volumes by itself, such as the treatise by Widder 
(1941), Smith (1966), and Kuhfittig (1978). It is with some misgivings that 
we close this section having presented only the barest essentials of the subject. 
Function vector space concepts such as orthogonality and completeness of a 
basis, however, seem to be easier to develop in terms of Fourier-and 
similar unitary-transforms. 

Table 8.1 Some Useful Laplace Transform Pairs 

exp(cq) 
sincq 
cos cq 

f(q) 

E>(q - a), a > 0 

0 2T 

>-
10 D 

0 T 3T 

o~~q 

ll>q 

I i>q 

~~~q 
0 2T 
qn exp(cq) 
exp( -q2 /2a2) 

Jicq),p. > -1 

JL(s) 

(s- c)- 1 

c/(s 2 + c2) 

sf(s 2 + c2) 

s - 1 exp( -as) 

{s[l + exp( -2Ts)]}- 1 

(s cosh Ts)- 1 

(s sinh Ts) - 1 

s-• tanh Ts 

n! (s- c)-n- 1 

a{-rr/2)112 exp(a2 s 2 /2) erfc(2 - 112as) 
(s 2 + c2)- 112c-~[(s 2 + a2) 112 - s]~ 

Domain 

Res> c 
Res> 0 
Res> 0 
Res> 0 

Res> 0 

Res> 0 

Res> 0 

Res> 0 

Res> c 
All s E 'If 
Res> 0 
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Table 8.2 Laplace Transform under Various Operators and Operations 

Relation f(q) JL(s) 

Linear af(q) + bg(q) afL(s) + bgL(s) 
combination 

Translation f(q- a) exp( -as)[JL(s) +fa dq'f(q') exp( -sq')] 

exp(aq)f(q) JL(s- a) 

Dilatation f(qfc), c > 0 cfL(cs) 

I,' +I"' Multiplication f(q)g(q) (2,.i)- 1 ds'fL(s')gL(s- s'), 
y-100 

y > type/,g 

Convolution f dq'f(q')g(q - q') JL(s)gL(s) 

Differentia- d" n 

tion dq"f(q), s"fL(s) _ 2: 8m-lpn-m>(O) 
m=l 

continuous 
d 
d/(q), sfL(s) -/(0) + exp(-dq)[/(d-) -/(d+)] 

discon-
tinuous at q = d 

( -q)"/(q) 
d" 
ds"JL(s) 

Integration f dq'f(q') s-lfL(s) 

-q-lf(q) r ds'f(s') 

8.2. Mellin Transforms 

Mellin transforms are closely related to Fourier transforms and consti
tute a "continuous analogue" of Taylor series. As was the case with Laplace 
transforms, there are at least two versions of this transform, a bilateral and a 
unilateral one. The first will help us to establish Dirac orthonormality and 
completeness relations for the repulsive oscillator wave functions. The second 
is useful for several of its properties involving convolution transformation of 
differential equations into difference relations and the appearance of gamma 
functions. 

8.2.1. Positive, Negative, and Bilateral Mellin Transforms 

Consider the direct and inverse Fourier transform equations (7.1) for 
functions g(q) and g(p) and make the change of variables q ==:In x, so that 
exp( ± ipq) = x±1P, mapping the real line q onto the positive half-line x. As 
dq = dxfx, it is convenient to attach a factor x- 112 to the kernel x1P and a 
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factor x- 112 to g(ln x), denoting the new function by f(x). After this has been 
done, the Fourier transform pair is 

f(x) = (Z7T)-112 1: dAf+ M(A)xiA-112, 

f+M(A) = (l1T)-112 f" dxf(x)x-i'--112, 

X E (0, 00), (8.23a) 

(8.23b) 

where, in addition, we have changed the dummy variable p by A and g(p) by 
f+M(A). The function f+ M(A) will be called the positive Mellin transform of 
f(x). Effecting the same changes of variable and notation, the Parseval 
identity (7.1c) becomes 

L" dxf(x)*g(x) = i: dAJ+ M(A)*g + M(A). (8.23c) 

The transform pair (8.23a)-(8.23b) is somewhat lopsided, since the 
functionf(x) is allowed to have only a positive argument. Negative values of 
x can be admitted only if, to begin with, we had introduced a change of 
variables q =:In( -x), x < 0. By following through with the same substitu
tions, this leads to 

f(x) = (27T)-li2 L: dAf_M(A)( -x)i'--112, 

f_ M(A) = (27T)-1/2 roo dxf(x)( -X)-iA-112, 

and the Parseval identity 

X E (-CO, 0), (8.24a) 

A E Sf!, (8.24b) 

roo dxf(x)*g(x) = f_00

00 
dAj_ M(A)*g _ M(A). (8.24c) 

Correspondingly, f_ M(A) will be called the negative Mellin transform of f(x). 
As, clearly, the positive and negative halves of f(x) are in general unrelated, 
the two transforms f+ M(A) and f _ M(A) are independent. If we introduce the 
positive-and negative-x-function (7.202b), 

X+ := {X, X ~ 0, X_ := {0, X ~ 0, 
0, X "' 0, -X, X --. 0, 

we can join (8.23) and (8.24) for x E Sf! as 

(fW11i1fBM)(x) := f(x) = (27T)-112 "~ L: dAj,:M(A)x~'--112, 
(MJBf)u{A) := f:M(A) = (27T)-ll2 L: dxf(x)x;;i'--112, 

j_oooo dxf(x)*g(x) = "~± 1: dAj,:M(A)*g~M(A). 

(8.25) 

(8.26a) 

(8.26b) 

(8.26c) 
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The pair of functions {fcfM(A)}a= ±• A E ~. are called the bilateral Mellin 
transform of f(x), x E ~- We must stress that the two component functions 
J!M(A) are needed to reconstitute f(x) for x E ~- The latter is the inverse 
bilateral Mellin transform of the pair J!M(A). 

8.2.2. Orthogonality and Completeness of x1~ - 112 

The bilateral Mellin synthesis (8.26a) can be seen as the continuous 
analogue of the Taylor expansion. Whereas the latter sums over the positive 
integer powers of x, the former involves integration of powers along a line in 
the complex plane. This is represented schematically in Fig. 8.6. Actually, 
pairs of series and transforms occur in several other instances, as will be 
mentioned in Section 8.5. Last, as we have only performed a change of 
variable and function in passing from the Fourier transform to the bilateral 
Mellin transform (8.26), the powerful results of the former can be translated 
to the latter verbatim. 

One of the results of Section 7.3 was to justify that if one of the functions 
of an integral transform pair was introduced in the other and the integrals 
exchanged, a representation of the Dirac 8 by a divergent integral was 
obtained. Following this procedure for the bilateral Mellin transform, 
substituting (8.26a) into (8.26b), we obtain the orthogonality relation for the 
set of functions { (27T) - 112 x; ih - 112} u = ± ,he9t as 

(8.27) 

where 8u,u' is the ordinary Kronecker 8 in the indices a and a' and 8(A - A') 
the Dirac 8 in the index A. Similarly, by substituting (8.26b) into (8.26a) and 
exchanging integrals, the completeness relation 

(8.28) 

is obtained. The set of functions {(277) - 11~ - x~h-l/~}u= ± ,he9t thus constitutes 
a generalized (Dirac) orthonormal basis for !l'~(~). Equations (8.27)-(8.28) 
are valid for the positive or negative Mellin transforms separately if we 
disregard the index a and restrict integration and 8's to positive or negative 
values of x. 

-1/2 0 1 2 3 

Fig. 8.6. The bilateral Mellin 
transform (double inte
gration contour at -t + 
i>.) as a continuous ana
logue of the Taylor 
series (circles on the 
integer points). 
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Exercise 8.6. Derive the orthogonality relation (8.27) from (7.93) for n = 0, 
q = A. - A', and p = In(± x) for the supports of x ±. Similarly, derive the com
pleteness relation (8.28) from (7.93) for n = 0, p = A., q = ln(±x), q' = ln(±x') 
in the appropriate ranges. You will be faced with a o in In x - In x' for which 
(7.96) can be used. 

8.2.3. Completeness of the Repulsive Oscillator Wave Functions 

The results (8.27) and (8.28) lead us neatly to the orthogonality and 

completeness relation for the repulsive oscillator wave functions presented in 

Section 7.5. The il11 ±(p) functions in Eqs. (7.202), which were instrumental in 

the solution of the problem, are (for a = 1) p ± i/\ - 112 times the phase exp(ip2/4), 

which is independent of A.. Now multiplication of the set in (8.27)-(8.28) by a 

purely x-dependent phase leaves the inner product (8.27) invariant: the phase 

of the first function cancels the phase of the second. Similarly, when multi

plied by exp(ix2/4) exp(- ix' 2/4) on both sides the A.-integral (8.28) yields 

completeness for the iii\ ±(p), as the left-hand side is nonzero only for x = x'. 
Since the Fourier transform is unitary-and for the full explanation of this 

fact we have to rely on more general results-it will map a Dirac basis of 

2'2 (£?.i') onto another such basis. Thus the set of functions v 11 ±(q) constitutes 

a Dirac basis of 2'2 (£?.i') as well. Finally, multiplication by the A.-independent 

phase factor exp(iq 2/2) and the q-independent one 2i/\/ 2 validates the set 

{x/\ a( q )} a= ±. IIE&i? in (7 .203) as a Dirac generalized basis, orthogonal and 

complete in 2'2(£?.i'). 

8.2.4. Unilateral Mellin Transforms 

As with Laplace transforms, there are at least two versions of the Mellin 

transform, the bilateral one sketched above and the more usual Mel/in

Laplace, or simply the Mellin, transform. We shall now detail the construction 

of the latter and mention some of its properties and areas of application. We 

start again from the Fourier transform pair (7.1) for g(q) and g(p), assuming 

that for some nonempty range of y, exp(yq)g(q) is integrable (this may be 

true only for y = 0). We set r := y + ip and u := exp( -q) > 0, following 

through with the changes in differentials and integration ranges. Finally, we 

introduce the functions f(u) := (27T)- 112 exp(yq)g(q) and jM(r) := g(p), 

obtaining for them the relation 

(IWtJ-lfM)(u) := f(u) = (l1ri) -l Jy+ioo drjM(r )u-r, (8.29a) 
y -t 00 

(Mf)(r) := JM(r) = f" duf(u)ur-l (8.29b) 

and the Parseval formula 

J.oo duf(u)*g(u)u2Y-l = (27Ti)- 1 fr+ioo drJM(r)*gM(r). 
0 y-joo 

(8.29c) 
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8.2.5. Example 

Working out an example will clarify some points. Consider 

Fn, _ c(u) := un exp(- cu), c E 'lf, Re c > 0, u > 0, (8.30a) 

which represents an exponentially damped oscillating function. As the 
integral (8.29b) over (0, co) is convergent for Re(r + n) > 0, the Mellin 
transform over this region is 

F~-c(r) = f" du exp( -cu)ur+n-l 

= e-r-n L"' du' exp( -u')u'r+n-l = c-r-nr(r + n), 

Re(r + n) > 0. (8.30b) 

In changing variables for Im c =1- 0 the integration contour is made along a 
ray in the complex u'-plane and shifted back as in Fig. 7.13 by the use of the 
Cauchy and Jordan results. The remaining integral is the gamma function 
(see Appendix A) for Re(r + n) > 0, and this by analytic continuation defines 
Fn~c(r) for all complex r + n =1- 0, - 1, -2, .... One of the useful characteris
tics of the Mellin transform is that, as we saw, exponential functions are 
transformed into gamma functions, whose difference relations [i.e., those 
relating r(z) with r(z ± n)] are well known. Compare this with the Laplace 
transform of the same example, Eq. (8.11), which is a function with an 
(n + l)th-order pole at c. The original function in the Fourier transform pair 
giving rise to (8.30a) is ~exp[ -(y + n)q - c exp( -q)] for any y > -n 
which is integrable on q E !!Jt. The Bromwich contour yielding the inverse 
Mellin transform of (8.30b) is thus along a vertical path in the complex 
r-plane crossing the real axis at y, to the right of all the poles of the function, 
as in Fig. 8.7. The inverse transform of(8.30b) can thus be found, for u > 0, 
as 

f y+ioo 

(27Ti)- 1 y-ioo drr(r + n)(uc)-rcn 

= (27Ti)-lc-n m~n tm drr(r + n)(uc)-r 

-oo 
= e-n L [Res r(r + n)!r=m](uc)-m 

m= -n 

00 

= e-n L ( -1)k(uc)n+kjk! = un exp( -cu) = Fn,-c(u). (8.30c) 
k=O 

In the process, we have used the Cauchy-Jordan results to reduce the Brom
wich contour to a series of contours Cm enclosing the integrand poles a 
- n, - n - 1, . .. and the residue formula for the gamma function at these 
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Fig. 8.7. Integration contour for Eq. (8.30c). 

points [see Eq. (A.7)]. The exponential series is thus regained, and the correct 
original function follows. Several functions and their Mellin transforms are 
listed in Table 8.3. Extensive tables of Mellin transforms can be found in the 
Bateman manuscript project [see Erdelyi eta!. (1954, Chapters VI and VII)]. 

Exercise 8.7. Check that for u > 0 the Bromwich contour cannot be closed 
through a right semicircle. Explore the situation for complex u. 

The convergence requirements of the Mellin integral (8.29b) may fail 
to be met by many functions of interest. The inconvenient growth of a func
tion g(q) for q .....,_. -co (u .....,_.co) was cured by the introduction of a factor 
exp(yq). A similar procedure could solve growth problems for q .....,_.+co 
(u .....,_. 0) with a factor exp(y'q). The simultaneous correction of divergences 
at both ends, however, may be impossible. The Mellin transform (8.29b) can 
then be broken up into two Mellin transforms of functions with support on 
(0, 1) and [I, co) and appropriate half-planes y and y'. Such a procedure is 
followed in Morse and Feshbach (1953, p. 976). For the following results, 
we shall simply assume that a non vanishing common band of convergence in 
the complex r-plane exists for all functions involved. 

8.2.6. Further Properties 

As with Fourier transforms, the properties of differentiation, multiplica
tion by a power of the argument, and translation under Mellin transformation 
point toward the possible applications of this transform. Consider the Mellin 
transform of the derivative of a functionf'(u) := df(u)fdu and its subsequent 
integration by parts: 

(Mf')(r) = {" du[df(u)jdu]uT - l 

(8.31) 

If, now, within a band in the r-plane the integrand vanishes at the interval 
ends, the constant term in (8.31) will be zero, and Eq. (8.31) will equal 
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-(r- l)(Mf)(r - I). This can easily be generalized for the nth derivative 
using the operator vn = dnfdun: 

n 

(MVnf)(r) = - ,2 ( -J)P(r - l)(r- 2) · · · (r - p)pn-pl(u)ur-pl:'=o 
p=l 

+ (- I)n(r - l)(r - 2) · · · (r - n)(Mf)(r - n). 

(8.32a) 

If all boundary values are zero, this reduces to 

(MVnf)(r) = (- I)n[r(r)fr(r - n)](Mf)(r - n). (8.32b) 

We see that differentiation of the original function becomes essentially 
a translation of the transform's argument. Using integration by parts, Eqs. 
(8.32) can be validated for antiderivatives as well, for negative values of n. 
The integration constants must be set to zero. Pure translation of the trans
form's argument [i.e., without multiplication by (r - p)-factors] can be 
achieved by multiplying f(u) by un. Using the multiplication by argument 
operator Q introduced in (7.55), we can write 

(MQnf)(r) = (Mf)(r + n). (8.33) 

Equations (8.32) and (8.33) are of course valid for real or complex n within 
the convergence band of the Mellin integral for the function in question. They 
can be combined as in, say, 

(MQmVnf)(r) = (MVnf)(r + m) 

= ( -J)n[r(r + m)jr(r + m - n)](Mf)(r + m - n), (8.34a) 

(MVnQmf)(r) = (- I)n[r(r)jr(r - n)](MQmf)(r - n) 

= ( -l)n[r(r)jr(r- n)](Mf)(r + m - n). (8.34b) 

Further properties of operator and operations under Mellin transformation 
can be found in Table 8.3. 

Exercise 8.8. Note that as (8.34), for m = 1 = n, is valid for an arbitrary 
function with appropriate growth conditions, one can deduce from here that 
[W, Q] := WQ - OW = ~ on any function in this space. Similarly, verify by 
algebraic manipulations on multinomials that (7.67) holds. 

The peculiar relationship under Mellin transformation among differen
iation, multiplication by powers of the argument, and translations should 
not be surprising as that is precisely the behavior of xr as a function of r 
under these operations. 

8.2.7. Applications and References 

One of the areas of application of the Mellin transform concerns the 
solution of the Laplace equation V2f(u) = 0 in two or more dimensions with 
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certain boundary conditions. When V is written in polar coordinates (u, ep) 
[see Eq. (6.16)] and is multiplied by u2, it is 

(u2 (J2jou2 + u ofou + o2foep2)f(u, ep) = 0. (8.35) 

Mellin transformation of (8.35) with respect to the radial variable u leads, 
by (8.34a), to 

(r2 + ()2j()ep2)fM(r, ep) = 0, 

whose solutions are of the form 

(8.36) 

JM(r, ep) = a(r) cos rep + b(r) sin rep. (8.37) 

The boundary conditions one can impose onf(u, ep) in order to fix a(r) and 
b(r) are, for instance,j(u, ep) as a function of u for two given values of ep, say 
epa and epb. These can represent, for instance, the electrostatic potential 
between two fixed, charged, nonconducting plates forming a wedge between 
epa and epb, the stress or the stationary temperature distribution between two 
such walls with fixed temperature. This problem, with a variety of boundary 
conditions, has been solved by Tranter (1948) and Lemon (1962). Essentially, 
the Mellin transforms of the boundary conditions are equated to (8.37) for 
ep = epa and epb, respectively. The ensuing solutions are examined, for instance, 
in the books by Colombo (1959) and Sneddon (1972, Chapter 4). 

Exercise 8.9. Examine more closely the conditions under which the Mellin 
transformation from (8.35) to (8.36) holds. Assume f(u, ep) behaves like u•1 for 
u-+ 0 and u•• for u-+ <XJ. Show that (8.36) holds for -y1 < u < -y2 • 

Exercise 8.10. Note that once the functions a(r) and b(r) in (8.37) have been 
found, the function (8.37) still has to be subject to an inverse Mellin transform. 
As the two functions in (8.37) contain the boundary data, one needs to know the 
inverse transform of a product of two functions. Prove the convolution formulas 
in Table 8.3. 

Table 8.3 Mellin Transform under Various Operators and Operations 

Relation f(u) fM(r) 

Linear combination af(u) + bg(u) afM(r) + bgM(r) 

Translation u"f(u) fM(r + n) 
dmf(u)fdum ( -l)m[r(r)/r(r - m)]Jm(r - m) 

Differentiation (In u)kf(u) dkfM(r )/drk 

Dilatation f(au), a> 0 a'fM(r) 
b-lf(ullb) fM(br) 

JY+Ia> Multiplication f(u)g(u) (2wi) - 1 dr'fM(r')gM(r- r') 
y-lco 

Convolution L"' u'- 1 du'f(u/u')g(u') JM(r)gM(r) 
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Table 8.4 Some Useful Mellin Transform Pairs 

f(u) fM(r) Domain 

un exp( -cu), Re c > 0 c-•-nr(r + n) Re (r + n) > 0 
(1 + un)-m r(r/n)r(m - r/n)Jnr(m) O<Rer<mn 
exp(-u2/2w) (2w)'12tr(r/2) 0 < Rer 

cos au a-•r(r) cos(rrr/2) O<Rer<l 

sin au a-•r(r) sin(rrr/2) O<Rer<l 

l+ucos</> 
rr cos r</>/sin rrr O<Rer<l 

1 - 2u cos </> + u2 ' 

l</>1 < '" 
usin </> 

rr sin r</>/sin rrr O<Rer<l 
1 - 2u cos </> + u2 ' 

1</>1 < '" 

u-•J.(au) 
(a/2)• -•r(r/2) 

O<Rer<l 2r(v - r/2 + 1) 

8.3. N-Dimensional Fourier Transforms 

A straightforward generalization of the results for the Fourier trans
formation of functions of one variable is the consideration of functions of N 
variables and their corresponding N-fold Fourier transformation. Most 
results from the one-dimensional case can be "vectorized" by inspection. 

8.3.1. Extension from One toN Dimensions 

Consider a function f(V of the vector variable q = (qt. q2, ... , qN). As 
a function of q1 we can apply the Fourier transformation (?.I b)-assuming 
all necessary conditions are satisfied-and obtain a function]U1(pt. q2, ..• , qN). 

This function in turn can be subject to the same transformation with respect 
to the variable q2 and so on, obtaining finally 

(8.38a) 

(8.38b) 

where 

(8.38c) 

and similarly for integration over p-space. We have also used the familiar 
inner (or scalar) product notation p·q := P1q1 + p2q2 + · · · + pNqN in 
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order to avoid confusion with the earlier sesquilinear product (p, q) in Part I. 
If p and q are represented as column vectors, p·q = pTq, where xT is the 
transpose of vector (or matrix) x. The Parseval identity is 

8.3.2. Linear Transformations of the Underlying Space 

The properties of the N-dimensional Fourier transform under linear 
combination, convolution, translation, and differentiation are perfectly 
parallel to those of the one-dimensional transform in Chapter 7, except for 
some factors or exponents involving the value of N which are easy to ascertain. 
In Table 8.5 we have collected these results. Most can be found by inspection, 
"vectorizing" the corresponding one-dimensional expressions: replacing q, p, 
and qp by q, p, and q ·p; J:"' dq by JtilN dNq; factors of (27T)- 1'2 by (27T)-N'2 ; 

etc. For dilatations, however, we have a nontrivial generalization: general 
linear transformations in q-space and corresponding ones in p-space. To 
obtain them, assumef(q) and its Fourier transform/(p) are known. We wish 
to find, in terms of these, the transform of 

( 8.39) 

where !IDA is an operator which carries the action of the N x N matrix A, 
which we assume to be real and nonsingular (det A ~ 0). Equation (8.39) is 
the natural generalization of Eq. (7.34). A change of variable q' := A -lq 
yields 

ldet AI1'2(27T)-Nt2 [ dNqf(q') exp( -ip·Aq') 
•[ilN 

(8.40) 

since pT Aq' = (ATp)Tq' and dNq = det A dNq' is the transformation Jaco
bian. When det A < 0, i.e., as in a reflection through the origin of an odd 
number of coordinate axes, an odd number of integrations will have the usual 
bound order inverted. A reversal of these integration limits will cancel the 
sign of det A and yield an absolute valued factor ldet AI. 

Exercise 8.11. Show that the dilatation operator [DA is unitary, i.e., 
(n:DAf, n:DAg)N = (f, g)N for all f and g for which the inner product is finite. This 
parallels Exercise 7.9-10. 
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Exercise 8.12. Verify that IDlAIDlB = []lAB applied to any function f(q). This 
generalizes Exercise 7.9. 

Exercise 8.13. Find the N-dimensional convolution forms of Table 8.5. 

Exercise 8.14. Define the multiplication-by-q1 operator as Q1 and the 
differentiation operator IPk := - i8joqk as generalizations of (7.55) and (7.56). 
Show that 

(8.41) 

Clearly, also 

(8.42) 

as in (7 .59). 

Exercise 8.15. Define the N-dimensional dispersion of a function f(q) as 

(8.43) 

where q1 is the vector average (or first moment) of f(q), the analogue of(7.216) 
for r = 1 and vector q. From (8.41) and (8.42), show that the uncertainty rela
tion (7.218) becomes 

fJ.(N)tJ,.<!;/l >- H/4 f f ,._- lV, • (8.44) 

What happens with the equivalent width relation (7.223)? 

The relation between linear transformations in q- and p-spaces embodied 
in Eq. (8.40) has a very important particular case: if the transformation 
matrix A is an orthogonal matrix [i.e., an angle-preserving transformation so 
that 

(Aq1)·Aq2 = q/ATAq2 = q/q2 = Q1·Q2 

for every ql> q2 E .')t'N], then AT =A -I, det A= ± 1, and the transformations 
in q- and p-space are the same. In terms of operators this means that, for A 
orthogonal, [])A and IF<N> commute. In the N = 1 case, the analogue of an 
orthogonal matrix is multiplication by ± 1, and in Section 7.2 we saw that 
parity was preserved under Fourier transformations. For N > 1 the state
ment follows that the properties of a function under rotation and inversion 
are preserved under IF<N>· In its full generality, the specification of "properties 
under rotation" requires group theory. (In three dimensions, knowledge 
of spherical harmonics is required, while for N = 2, Fourier series is all one 
needs. This case will be developed in Section 8.4.) One property, invariance, 

is nevertheless easy to state: a function f(q), q E .')t'N, is invariant under 
orthogonal transformations if f(q) = f(A - 1q) for all orthogonal A. This 

means that the function can depend only on the norm q := (q·q)112. Under 
Fourier transformation this property becomes j(p) =](A - 1p), so J in turn 

can also only depend on p :== (p·p)1' 2 • 
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8.3.3. The Diffusive-Elastic Medium with Sources 

We shall illustrate the use of the N-dimensional Fourier transform in 
finding the general form for the solution of the elastic, diffusive medium with 
sources in N dimensions, governed by 

V2f(q, t) + F(q, t) = c- 2 :t2
2 /(q, t) + a- 2 :/(q, t), (8.45) 

with initial conditionsf(q, t0) andj(q, t0 ) := 8f(q, t)/8tlt=to at some "initial" 
time t 0 • Expression (8.45) resembles in part the diffusion equation, Eq. (5.1), 
with diffusion constant a, and in part the wave equation (5.15) with propaga
tion velocity c. The sum of the two terms on the right-hand side states that 
the acceleration of the observable f due to its curvature at q is diminished by 
the velocity-dependent term, which has the effect of a viscous braking force. 
Further, the source term F(q, t) acts as a driving force in the regions of 
(q, t)-space where it applies. The limits c--? w and a --7 w lead, respectively, 
to the simple heat and wave equations in N dimensions. 

Assumingf(q, t) and its derivatives are square-integrable in £?lN, we can 
apply theN-dimensional Fourier transform to (8.45), obtaining 

-p 2j(p, t) + F(p, t) = c- 2 :t2
2 j(p, t) + a- 2 :/(p, t), (8.46) 

with initial conditions f(p, t 0) := [IF<Nl( ·, t 0)](p) and j(p, t0). In this equation 
the most difficult part, the N-dimensional Laplacian operator, has been 
converted into a factor of - p2 as with one-dimensional problems. Equation 
(8.46) is thus a second-order ordinary differential equation in time, which has 
been solved in Section 7.3 [Eq. (7.111)] using Fourier transforms and again 
in Section 8.1 [Eq. (8.16)] using Laplace techniques. By treating p 2 as a 
parameter and establishing the correspondence between {c- 2 , a- 2 , p 2, t} and 
{M, c, k, q }, the solution to (8.46) is 

](p, t) = ];..(p, t) + ] 8 (p, t). (8.47) 

The transient term solution to the homogeneous equation (8.46) (with 
the F term absent) is given in terms of the boundary conditions at time t 0 as 

] 8 (p, t) = ](p, to)[a- 2 G(p, t- t0 ) + c- 2 G{p, t- t0 )] 

+ j(p, to)G(p, t - t0 ). (8.48) 

The function G(p, t - t0) can be copied from the simple oscillator Green's 
function [Eq. (2.lla), (2.11 b), (2.12), (2.13a), (2.13b ), (7.116), or (8.21), 
exchanging symbols as before and we for p.] as 

G( 1 _ {c2 exp(- rt) sin w.t/w., t > o, 
p, ) - 0, t ,_;; 0, (8.49a) 

(8.49b) 
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The time derivative of (8.49) is G(p, t). The tilde has been kept for (8.49) as 
Its IF<;,} transform will be the Green's function for the equation (8.45) we are 
solving. 

The stationary solution to (8.46) due to the source F(p, t) is given by the 
convolution-with respect to t-of the source function with (8.49) [see (7.117) 
or (8.22) with the proper symbol exchange], i.e., 

JF(p, t) = (F~ G)(p, t) = ft dt'F(p, t')G(p, t- t'). (8.50) 
Jto 

We assume the source to start operating not earlier than the initial time t 0 • 

Equation {8.45), whose solution we are seeking, now requires that we 
apply IF<;,} to (8.47)-(8.50). The transient term (8.48) is the product of 
functions ofp; hence its inverse transform will be a convolution over q of the 
factors. As the initial conditions are assumed to be given, the key lies in 
finding 

GN(q, t) := [IF(;,~G(.' t)](q) 

= (27T)-NI2c2 exp(- rt) l dNp(c2p2 - r2)-l/2 
IJlN 

x sin[(c2p2 - r 2)112t] exp(ip·q). (8.51) 

Once this Green's function-and its time derivative-is found, the transient 
term will be given by 

fn(q, t) = (27T)-N12{f( ·, to)! [a- 2GN( ·, t - t0) + c- 2GN( ·, t - t 0)]}(q) 

+ (27T)-N12c- 2[f(·, t 0)! GN(·, t- t 0)](q). (8.52a) 

The stationary solution will be a double convolution-with respect to q and 
t-of the source with the Green's function: 

fp(q, t) = (27T)-N12(F** GN)(q, t) 

= (27T)-NI2 t dt'f dNq'F(q', t')GN(q- q', t- t'). 
Jto fllN 

(8.52b) 

The most general solution will be, finally, (8.52a) plus (8.52b). 

8.3.4. Wave Equation in Three Dimensions 

As before, it will simplify matters to look for the fundamental solutions 
to the equation of motion, that is, those solutions or their time derivatives 
which at t = t0 are Dirac S's in q, as these are found in terms of the Green's 
function GN(q, t - t0) and its time derivative. In this section we shall examine 
two limiting cases of interest: the wave equation in three dimensions, 
obtained in the limit a --7 oo, and the diffusion equation in N dimensions, 
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which is the limit c ___,.. oo. The wave equation for two and N dimensions and 

the general solution of (8.45) will be found in Section 8.4. We shall attach 

the indices w for wave and h for heat to the Green's functions in order to 

avoid confusion. 
The wave equation in three dimensions simplifies the problem of finding 

the Green's function (8.51) since for a___,.. oo, r ___,.. 0. We are left with the 

calculation of the three-dimensional inverse Fourier transform of aw(p, t) = 
c sin(cpt)/p. By introducing the well-known spherical coordinates 

p1 = p sin (} sin cp, p E [0, oo), 

p 2 = p sin (} cos cp, (} E [0, n ], (8.53) 

Ps = p cos e, 'P E [0, 2n), 

and setting the (} = 0 direction along the vector q so that p·q = pq cos 8, the 

volume integrals (8.38) become 

i d3p .. · = (oo p 2 dp ("sin(} d(J ( 2
" dcp · · ·. (8.54) 

aa Jo Jo Jo 
We thus calculate 

J. oo f." fh G3w(q,t)=(2n)- 3 ' 2c pdpsin(cpt) sin8d(Jexp(-ipqcos(J) dcp 
0 0 '0 

= (2n)-lf2c ( oo pdp sin(cpt) J1 du exp( -ipqu) 
Jo -1 

(u := cos 8) 

= (2n)- 1 ' 2(2c/q) Jooo dp sin (cpt) sinpq 

= (2n)- 1 ' 2(c/q) L oo dp{cos[p(q- ct)] - cos[p(q + ct)]} 

= (2n)1 ' 2(c/2q)[S(q- ct)- S(q + ct)] [Eq. (7.93)] 

[Eq. (7.94b)]. 

(8.55) 

Similarly, we find 

G3w(q, t) = -(27T)112(2c2/q)[S'(q- ct) + S'(q + ct)]. (8.56) 

The general solution to initial conditions is thus found from (8.48) (for 

a___,.. oo), (8.55), and (8.56) fort > ! 0 , and by remembering that q ;;:?: 0, 

fs(q, t) = -(47T)- 1 l d3q}(q', !o)Jq- q'J-lS'(Jq- q'j - c(t- to)) 
aa 

+ (47Tc)- 1 L d 3q:/(q', t 0)jq- q'j- 1S(jq- q'j- c(t- t0)) • 

.']~3 (8.57) 
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Fig. 8.8. The fundamental solutions Gaw(q, t) of the three-dimensional wave equation 
are expanding spherical singularity shells modulated by a radial geometric 
factor of q- 1 (continuous line). 

It should be observed that wave propagation m three-dimensional elastic 
media has the following properties: 

(a) The causality principle is obeyed due to the appearance of the 8's and 
the restriction t > t0 : if a disturbance is localized at a point q0 at time t0 , no 
information is available at a point q1 as long as jq0 - q1 j > c(t - t0 ). [Just 
for the record, it should be noted that (8.55) and (8.56) possess advanced 
solutions for t < !0 besides the retarded ones for t > t0 which were kept in 
(8.57); the former are usually considered nonexistent based on the present 
lack of solid experimental evidence. Yet see Puthoff and Targ ( 1976, Sections 
IV and V and the references within).] 

(b) Reciprocity holds. The effect of a disturbance at q0 on q1 is the same 
as that of a disturbance at q1 on q0 if their proper time ordering is respected. 
This is a consequence of our assumption that space is homogeneous and 
isotropic-Eq. (8.45) involves only V2-and is reflected in the fact that the 
Green's function (8.57) is a function of jq - q'j only. 

(c) A point (singular) disturbance at t0 propagates as an expanding 
spherical singularity shell of radius c(t - t0) modulated by a geometric factor 
jqj- 1 • See Fig. 8.8. This factor gives rise to the familiar "inverse-square" 
law for isotropic illumination, the latter being proportional to the square of 
the disturbance amplitude. 

(d) There is no backwave; once the expanding singularity shell described 
above passes over a point, the medium again remains at rest. 

Exercise 8.16. Consider the case of N = 1 dimension. This only simplifies 
the necessary inverse Fourier transformation. The Green's functions obtained 
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will be identical to (5.27) found for the case of elastic media with fixed ends. 
Except for the lifting of this restriction, all conclusions of Section 5.2 continue to 
hold. Note carefully that the three-dimensional Green's functions (8.55)-(8.56) are 
-q- 1ofoq times the one-dimensional Green's functions (5.27a)-(5.27b). This fact 
will be generalized in Section 8.4. 

Exercise 8.17. Consider the energy in a three-dimensional elastic vibrating 
medium. This can be found along lines parallel to (5.40)-(5.42), except that 
integration proceeds over ~3 • Show that the partial energy of each constituent 
wave Ep := p2 li<P, t)l 2 + c· 2 ij(p, t)l 2 is separately conserved. As the medium is 
governed by a linear equation, there will be no energy exchange between different 
partial waves. The wave equation thus has a continuous infinity of conservation 
laws, one for each value of p. 

Exercise 8.18. Propose solutions to the three-dimensional wave equation of 
the form (217)- 312 exp[i(p·q +pet)]. Expand a general solution in terms of these 
and the partial-wave coefficients in terms of the initial conditions. Thus reconsti
tute Eq. (8.57). [See the article by Halevi (1973).] 

Exercise 8.19. Show the transitivity of time evolution. Compare with 
Exercises 5.10 and 5.17. 

8.3.5. The Diffusion Equation in N Dimensions 

A second family of cases where Eq. (8.45) yields to an easy solution is 
the limit c--+ oo, when the medium becomes purely diffusive. Although 
r--+ oo and w. ~ i(r - a 2p 2), the limit of (8.49a) is well defined. It is 
GNh(p, t) = a2 exp( -a2p2 t). The inverse IFN transform of GNh(p, t) is easy 
to find in Cartesian coordinates, the function being the product of Gaussians 
of width (2a2t)- 1 in each of the coordinates. By Eq. (7.22) we find, inN 
dimensions, 

N 

GNh(q, t) = a2 n (?T/a2t)112[1F-1G(2a•o·l](qk) 
k=l 

= a2(2a2t)-N12 exp( -q2/4a2 t). (8.58) 

The general transient solution thus becomes, from (8.52a), 

f 8(q, t) = (4?Ta2t)-N12 i dNq'f(q', t0) exp[- (q - q')2/4a2(! - ! 0)], (8.59) 
gpN 

leaving out the initial velocity as a boundary condition for fn(q, t). The differ
ential equation is now of first order in time. The fundamental solutions are 
spreading Gaussians of width 2a2(t - t0) with a decreasing maximum of 
(4?Ta2t)-N'2. See Fig. 8.9. One can see that the temperature maximum drops 
faster for higher dimensions: heat simply has more directions in which to 
escape. 
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Fig. 8.9. The fundamental solution G1"(q, t) of the one-dimensional diffusion equation 
(for a = -!-). The initial condition given by a Dirac o at q = 0 develops in time 
as a spreading Gaussian. 

It is interesting to compare the Green's function for a one-dimensional 
heat flow in an unbounded medium (Fig. 8.9) with the heat flow in a ring 
discussed in Section 5.1 (the Green's function is shown in Fig. 4.13, reading 
time development upward). Exercise 8.20 indicates some further developments. 

Exercise 8.20. Solve the N-dimensional homogeneous diffusion equation 
(8.45) (c---+ w) by proposing separable solutions in all coordinates. Choosing the 
boundary conditions, you should arrive at (8.59). 

Exercise 8.21. Prove that total heat is conserved. Compare with Exercise 5.1. 
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Table 8.5 A Function and Its N-Dimensional Fourier Trans
form under Various Operators and Operations" 

Operation 

Translation 

Linear transformation 

Multiplication 

Convolution 

Differentiation 

/(q) 

/(q + y) 
exp(- iq · x)/(q) 

/(Aq) 

/(q)g(q) 

U* g)(q) 

V/(q) 
-iqf(q) 

" Compare with Table 7.1 for the N = 1 case. 

/(p) 

exp(ip · y)/(p) 
/(p + x) 

ldet AI-'/(AT- 1 p) 

(27T)- N12(/ * g)(p) 

(27T)NI2/(p)g(p) 

ip/(p) 
V/(p) 
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Exercise 8.22. Prove the transitivity of the time evolution given by (8.59). 
This is the analogue of Eq. (5.11) or (5.14). Equation (7.50) should come in very 
handy. 

The description of the wave and diffusion phenomena as well as some 

generalizations such as the telegraph equation can be found in several 

theoretical physics texts. Notably, Courant and Hilbert (1962) dedicate 

several sections of Vol. 2 to these problems, using several solution methods 

in Chapters III and VI. 

8.4. Hankel Transforms 

If a system "looks the same" from any direction in space, we say that 

it is invariant under rotations or isotropic. This is the case, for instance, of 

gravitational attraction between point masses. It is also true of many poten

tials in spinless quantum mechanics. The isotropy of the system implies that 

the governing equations of motion depend only on rotationally invariant 

quantities such as functions of q := \q\ = (q·q)112 or derivatives as \J2. This 

was the case of the N-dimensional elastic-diffusive medium described by 
Eq. (8.45), which was not only isotropic but homogeneous: invariant under 

translations (only "i/2 appears). The Fourier transform of an isotropic 
differential equation is itself isotropic, and thus the Green's function is a 

function of q only. Of course, initial conditions need not be isotropic. Only 

the laws of motion are. This brings us to examine more closely the N

dimensional Fourier transform of functions of the radial variable q only and, 

later, that of eigenfunctions of the rotation operators. Parametrizing N

dimensional space conveniently in spherical coordinates, we shall reduce the 

N-fold n=<N> integration to a single integral defining the Hankel transform. 
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8.4.1. Spherical Coordinates in N Dimensions 

The problem of introducing spherical coordinates into N-dimensional 
space can be tackled by guiding ourselves with the two- and three-dimensional 
cases [Eqs. (6.14) and (8.53)]. Consider a vector of length q along the Nth 
coordinate vN := {0, ... , 0, q }. (To save space we write column vectors as row 
vectors between braces.) We transform this vector by a rotation by an angle 
fJN_ 1 in the N-(N- 1) coordinate plane. The vector is then transformed into 
vN_ 1 := {0, ... , 0, q sin fJN-1> q cos fJN_ 1}. If N = 2, this is all we need to do. 
If N > 2, we now rotate vN_ 1 into the next higher subspace, through an 
angle fJN_ 2 in the (N- 1)-(N- 2)-plane, obtaining 

VN- 2 := {0, ... , 0, q Sin (}N-1 Sin (}N_ 2 , q Sin (}N- 1 COS (}N_ 2 , q COS (}N_ 1}. 

If N = 3, this is all. [See Eqs. (8.53).] If N > 3, we rotate through an angle 
fJN-a in the (N- 2)-(N- 3)-plane and continue in this way, piling sines and 
cosines of the new angles on the components of the vector vN-k· Once a 
cosine is added to a component, it receives no new factors. The last rotation 
through 81 is in the 2-1 plane. The components of v1 are then, finally, 

q1 = q sin fJN-1 sin fJN- 2 ···sin 82 sin 81> 

q2 = q sin fJN _1 sin fJN _ 2 • • ·sin 82 cos (}I> 

q3 = q sin fJN- 1 sin fJN_ 2 ···cos 82 , 

qN- 1 = q Sin (}N_ 1 COS (}N_ 2 , 

qN = q COS (}N-1· 

(8.60a) 

If we let fJN_ 1 E [0, 77], then qN E [ -q, q], while the component qN_ 1 will take 
values in [ -q, q] when fJN_ 2 is also allowed to range over [0, 77]-and similarly 
for (}N_ 3 , etc., up to 82 • Last, 81 must range in [0, 277) if q1 is to take positive 
as well as negative values. Hence, the angle ranges in (8.60a) are appropriately 
described by 

(}1 E [0, 277 ), k = 2, 3, ... , N- I, q E [0, oo). (8.60b) 

For any N-dimensional vector q of components {ql> q2 , ••• , qN} we can find 
values of q and (}k> k = I, 2, ... , N - 1, to parametrize its components. To 
find (}k we construct 

rk == (q1 2 + q2 2 + · · · + qk2) 112 = q sin fJN-1 ···sin fJk = rk+ 1 sin fJk, 

(8.61a) 

(8.61b) 

thus finding (}k as arctan(rk/qk+ 1) for k = 1, 2, ... , N- 1, r1 = ql> and 
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rN = q. Equations (8.60) thus serve to define spherical coordinates for N
space. We can find the volume element dNq from Eqs. (8.61), since for fixed k 

they tell us that the two-dimensional vector {rk, qk+ 1} is represented in polar 

coordinates as having radius rk+l and angle Ok as in (6.14b). Thus 

drk dqk+l = rk+l drk+l dOk, 

Hence, recursively, 

dNq = dqN dqN-1 ·' · dq3 dq2 dql 

= dqN · · · dq3r2 dr2 d01 

= dqN · · · dq4r2r3 dr3 d02 d01 = · · · 

= r2r3 · · · rN drN d0N_ 1 • • • d02 d01 

k = 1, 2, ... , N- 1. (8.62a) 

= qN-l dq sinN- 2 ON_ 1 dON-l · · · sinN-k-lON-k dON-k · · · d01 • (8.62b) 

This allows us to calculate the (N - I)-dimensional surface of the sphere 

SN-l inN dimensions as 

ISN-ll = {' sinN- 2 ON- 1 dON-l ···{'sin 02 d02 L2
" d01 

= {7T112r((N- 1)/2)/f(N/2)}1SN_ 21, 

where we have used the Wallis integral for sinm 0. Since IS11 = 27T, 

ISN-11 = 2rrN12/l'(N/2). 

(8.63a) 

(8.63b) 

We verify that IS2 1 = 4rr is the 2-surface of the usual sphere in three dimen

sions. 

8.4.2. Reduction of the Fourier to the Hankel Transform 

We can now tackle the problem of finding the N-dimensional Fourier 

transform of a functionf(q) of the radial variable q. Choosing the ON-l = 0 

axis along the direction of p so that p·q = pq cos eN_ 1 , we must perform 

j(p) = (27T)-N12 LN dNqf(q) exp( -ipq cos eN_ 1 ) 

= (2rr)-NI21SN-21 LX> qN-l dqf(q) i'' sinN-2 (}N-l dON-l 

X CXp(- ipq COS (}N -1). (8.64) 

The integrations over the angles ON_ 2 , •.• , 81 have yielded ISN_ 2 1 as given 

by (8.63), and we are left with a single integral over eN-l of the type 

f sin2 ~' 8 dO exp( ± iz cos 8) = 7T112f(fL + l/2)(z/2) -~t JIL(z). (8.65) 
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The Bessel function (Appendix B) thus enters into the picture. Substituting 
(8.65) into (8.64) and canceling the r-functions, we find 

J(p) = p-N/2 + 1 f' qN/2 dqf(q)JN/2 -1(pq) =: (IHJ~/2- 1f)(p), (8.66a) 

which is defined as the Hankel-Bochner transform of order N/2 - I off( q ). 
The inverse transform follows with only a change of sign in the exp(- ip·q) 
factor, rendered innocuous by the double sign in (8.65), so that 

f(q) = q-N/ 2 + 1 L" PN12 dpJ(p)JN/2-1(pq) =: (1Hl~/2':..J)(q). (8.66b) 

Notice that the transform kernels of 1Hl)L8 and IHl~- 1 are the same, and hence 
1Hl~2 = ~. [Compare with the property of the Fourier transform, where 
P = D0 ; see Eq. (7.25).] This is to be expected, as from the IF<NJ point of view 
we are dealing with rotationally invariant functions. These functions are even 
in each of the Cartesian coordinates, and thus D0 is equivalent to ~ in their 
subspace. 

A Parseval formula holds for the Hankel-Bochner transforms (8.66a)
(8.66b): 

(f, g)N = i dNqf(q)*g(q) = ISN-d f"' qN- 1 dqf(q)*g(q) 
~N 0 

(8.67) 

Exercise 8.23. Examine the Hankel-Bochner transform (8.66) for N = 1 
dimension. Show that we are dealing with even functions and the cosine Fourier 
transform, as J _112(z) = (2/Trz) 112 cos z. 

Exercise 8.24. Examine the Hankel-Bochner transform for N = 3 dimen
sions. This has already been used in Section 8.3. In fact, it reduces to the sine 
Fourier transform as J112(z) = (2j1rz) 112 sin z. 

Exercise 8.25. Find the Hankel-Bochner transform of degree fL of f(cr) in 
terms of that of f(r). 

8.4.3. Recursion Relations 

There is a relation between Hankel-Bochner transforms of orders fL 
and fL + m, m an integer. This comes from a recursion relation for Bessel 
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functions, which can be found directly from (8.66a) and (8.65) for fL = 

N/2- 1: 

_! dd (IHVf)(p) = (27T)-~t-11Sz~tl f"' q2~t+l dqf(q) 
p p 0 

x [" sin2 ~' 8 d8(ip - 1q cos 8) exp(- ipq cos 8) 
• 0 

= (27T)_~'_ 1 1Sz~tl i"' q 2~'+ 1 dqf(q)(ir 1q)(2fL + 1)- 1 

x [sin2~'+ 1 8 exp( -ipq cos 8)l:=o 

- ipq Jo" sin2 ~' + 2 8 d8 exp(- ipq cos 8) l 
= (ll-ll~+1f)(p), (8.68) 

where we have used integration by parts and the recursion (8.63a). It follows 

that 

(8.69) 

which relates the Hankel-Bochner transforms of orders differing by an 

integer. 

8.4.4. Odd- and Even-Dimensional Wave Equations 

As the Hankel-Bochner transform of degree fL = N/2 - 1 of a function 

f(q) is theN-dimensional Fourier transform of the functionf(q) of radius q, 

we can immediately put Eq. (8.69) to work on the problem-stated in Section 

8.3-of finding the Green's function for the N-dimensional wave equation. 

This will show some of the characteristics of the solutions for general N. 

From (8.51) with r = 0 and Gw(p, t) = c sin cptjp, we have 

GNw(q, t) = [IF(N)(;w(-, t)](q) = [IHJ~/2-1(;w(-, t)](q) 

= ( -q- 1 ofoq)m[IHWN-2m)f2-1(;w(-, t)](q) 

= ( -q - 1 ojoq)mG'fJ_ 2m(q, t) = [ -2 ojo(q 2)]mG'fJ_ 2m(q, t). (8.70) 

In (8.55) and (8.56) we have calculated G3 w(q, t), and so we have the expres

sions for odd dimension 2n + 3. Keeping only the retarded solution, we have 

G~n+3(q, t) = ( -q - 1 ofoq)nG3W(q, t) 

= c(JT/2)1 ' 2 ( -q - 1 ofoq)n[q - 13(q- ct)], (8.71a) 

G~n+ 3(q, t) = -c2(7T/2)1'2( -q - 1 ofoq)n[q -lo'(q- ct)], (8.7lb) 

which represents an expanding singularity shell. It exhibits (a) causality, 
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(b) reciprocity, (c) a leading modulation factor q -n, and (d) no backwave or 
wake. 

Exercise 8.26. Verify that (8. 71) correctly relates the results for one- and 
three-dimensional spaces. See again Exercise 8.16. 

To find the wave equation Green's function in an even number of dimen
sions we can produce a two-dimensional world out of a three-dimensional 
one by assuming that all relevant objects are cylinders along the q3-axis, that 
is, the initial conditions are independent of q3 • In doing this, the integral over 
q3 in the convolution (8.57) can be performed on the Green's function alone, 
i.e., 

H2w(q{q1, q2}, t) := 1: dqaGaw(q{qb q2, qa}, t). (8.72a) 

We can perform this in Cartesian coordinates for the retarded part of (8.55): 

H2w{q{ql, q2}, 1) 

= c(TT/2)112 f_oooo dqa(ql2 + q22 + qa2)-1128((q12 + q22 + qa2)1/2 - ct) 

= c(TT/2)1121: dq3(q12 + q22 + q32)-ll2ct(c2t2 _ q12 _ q22)-l/2 

x {S(qa _ (c2t2 _ q12 _ q22)112) + 8(qa + (c2t2 _ q12 _ q22)112)}, 

(8.72b) 

where in the last equality we have used the expression (7.96) for a 8[F(q)] 
in terms of 8(q - a1), a1 being the roots of F(q); namely, 

al,2 = ±(c2t2 - ql2- ql)l/2 

when q1 2 + q2 2 < c2t 2. No roots exist for q12 + q2 2 > c2t 2. Thus in a two
dimensional space, 

(8.73) 

where we have introduced the Heaviside step function 0, Eq. (7.89), and 
divided by (2TT) 112, since the two-dimensional Green's function will be present 
in convolutions (8.52) with factors (2TT)- 1 instead of (2TT)- 312 as for three 
dimensions. As 0'(q) = 8(q) and 0(0) := 1/2, from (8.73) we find 

(';2w(q, t) = -cat(c2t2 - q2)-3120(ct- q) + c2(c2t2 - q2)-18(q- ct) 

= [2c8(q- ct)- c2t(c2t 2 - q 2)- 1]G2w(q, t). (8.74) 

Equations (8.73) and (8.74), as well as the Green's functions for a higher, 
even number of dimensions obtained by (8.71), fulfill the properties (a), (b), 
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and (c), as do the solutions of the wave equation in other dimensions. As to 

property (d), the behavior is different. The disturbance, if originally localized, 

will develop a trailing wake, because of the non-8 form of G2w(q, t), which 

smears any initial condition out of its original sharpness. This trailing wake, 

backwave or reverberation is a characteristic of all even-dimensional spaces. 

A stone thrown in a pond does not quite reproduce, thus, the behavior of 

waves in three-dimensional space. 

8.4.5. General Solution of the Diffusive-Elastic Equation 

For the Green's function of the N-dimensional general elastic-diffusive 

medium, we have to calculate, as in (8.70), the inverse Hankel transform of 

(8.49), namely, 

GN(q, t) = (IF(N)G(, t))(q) = (IHI~/2-lG(·, t))(q) 

= c2q-N/2+1 exp(-rt) f" dppNi2(c2p2 _ r2)1/2 

X sin(t(c2p2- r2)112]JN/2-l(pq). (8.75) 

This is a rather difficult integral to do "by hand." It appears in the literature, 

however, as a particular case of the discontinuous Sonine integrals. [See 

Watson (1922, Section 13.47). In the tables of Hankel transforms by 

Oberhettinger (1973), it can be found by Eq. 6.43-ll.] The result is 

GN(q, t) = c(77j2)1'2[rc-l(c2t2 _ q2)-112]<N-1)/2 

x exp(-rt)I_<N-1J/2(l'c-l(c2t2- q2)112)EJ(ct- q), 

q =1- ct, (8.76) 

where Iv(z) is the modified Bessel function (see Appendix B) and 8 the usual 

Heaviside step. This function has been plotted for various values of para

meters and variables in Fig. 8.10. The Green's function (8.76) includes o 
terms at q = ct for N > 2. These can be obtained for odd N using (8.68) and 

the fact that G1(q, t) is simply discontinuous at the advancing edge of the 
wave. For N even, one starts from G2(q, t). 

Exercise 8.27. Consider the diffusion equation limit c ->- CXJ of the Green's 
function (8.76), recalling that lv(z) ~ (21rz) - 112 exp(z) as z->- CXJ. Verify that Eq. 
(8.58) is correctly reproduced. 

Exercise 8.28. Consider the wave equation limit a->- CXJ of (8.76) using 
I v(z) ~ (z/2)v jr(v + 1) for v # - 1, - 2, ... as z->- 0. This verifies only the even
dimensional cases. Show that for N = 2, (8.73) is correctly given. For N odd and 
larger than 1, the result is zero since (8.76) holds for q # ct. 
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Fig. 8.10. Green's Junctions for elastic-diffusive media in one, two, and three dimensions 
(top, middle, and bottom rows). With advancing time (t = 0.5, 1, and 2 in the 
first, second, and third columns), the disturbance spreads up to q = ct and is 
zero from there on. In each graph we have plotted the function for values of 
r = 0.1, 0.5, 1, 2, and I 0 with different dottings. The first value corresponds 
nearly to the" wave" limit and the last value to the" diffusive" one. [Note that 
a change of scale is still needed: Eqs. (8.52).] The two- and three-dimensional 
cases have a singular edge: a (c2 t 2 - q 2)- 1 ' 2 factor for two dimensions and a 
q- 1 o(q - ct) summand for three. 

Exercise 8.29. Show that the Laplacian operator inN dimensions, Eq. (6.2), 
can be written in spherical coordinates (8.60) as 

r12 - N + 1 a N -1 ° 2A2 
V (N) = YN -;-- YN --;--- + ri{ (N -1)> 

vrN vYN 
(8.77a) 

where rN := q, the radial coordinate in N-space, and A~N- 1 > is the Laplacian on 
SN-!, 

Az . -k+2 8 a . lc-2 8 o . -2 8 A2 
(k) = Sill k-1 -;------8 Sill k-1 a-8 +Sill k-1 (k-1)> 

v k-1 k-1 
(8.77b) 

(8.77c) 

This can be done recursively. For N = 2, Eqs. (8.77) match Eq. (6.16). If 
(8.77a)-(8.77b) are valid for N = k, V~k> involving second derivatives with respect 
to qb q2 , ••. , q1c, then they also hold for V~k+ 1> = az; aq~+ 1 + V~k>· Use the 
recursiveness provided by Eqs. (8.61), the two dimensional case for the (r~c, q"+ 1)

plane, and r/: 1 a;ark = ri:.t1 oforlc+1 + r/:;1 cot 8k a;a8k. 
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8.4.6. Hankel Transforms and Definite Symmetry under Rotations 

Another context in which Hankel transforms arise is in finding the 

Fourier transforms of functions with definite transformation properties 

under rotations. This term merits some explanation. (In Section 4.3 we used 

the synonymous characterization of definite symmetry under translations on a 

circle.) We examine functions, or sets of functions, which transform among 

themselves under rotations. Their characterization is aided if we ask them to 

be eigenfunctions of a rotationally invariant self-adjoint operator, as then 

they will constitute complete and orthogonal sets of functions on the angle 

variables. In two dimensions the procedure can be implemented in terms of 

Fourier techniques. If we choose functionsfm(q) := f(q) exp(im8q), where q 

and 8q are the radial and angular parameters of q, then a rotation by a will 

transform fm(q) into a multiple of itself: lrafm(q) = exp(ima)fm(q). As 

1r 2, = ~, m can only be an integer. The rotation-invariant self-adjoint 

operator - i ofo8q can be used to label fm(q), and these, we know from the 

theory of Fourier series, are orthogonal and complete in their inner product 

on 8q E ( -1r, 1r]. Every function fm(q) (fixed m) will thus have the same, 

definite, rotation property and so will its Fourier transform. Consider now the 

two-dimensional Fourier transform of the set Um(q)}, {fm(P)} for fixed m 

and f E 2'2(&i'2). Using the Bessel generating function (B.4) fort = i exp(i8), 

we can write the IF<2J kernel function as 

00 

exp(±ip·q) = exp(±ipqcos 8) = 2: (±itln(pq)exp(in8). (8.78) 
n:::::- co 

If q and p have polar coordinates q, 8q and p, 8P, p ·q = pq cos( 8P - 8q), and 

thus, for 8 := 8P - 8q, we can use the expansion (8.78) in finding 

= (27T)- 1 J
0

00 

q dq f" d8qf(q) exp(im8q) 

x 2: (-itln(pq) exp[in(BP- 8q)] 
nE.Z 

=Joo qdqf(q) 2: (-iYln(pq)exp(in8P) 
0 nE:?l' 

f2n 

x (21r) -I 
0 

d8q exp[i(m - n)Bq] 

l oo q dqf( q )(- i)"'] m(pq) exp(im8P). (8.79) 
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That is, 

](p) = ( -i)m f" q dqj(q)Jm(pq), 

J(q) = ;m i"" P dpj(p)Jm(pq) 

[Sec. 8.4 

{8.80a) 

(8.80b) 

relate the "radial parts" of fm(q) and its IF<2> transform lm~). Form= 0 
(invariance under rotations) we recover the Hankel-Bochner transform (8.66) 
(of degree zero) for N = 2. Form #- 0 (8.80) yields one transform for every 
m which differs from (8.66) for m = N/2 - 1 only in the powers of p and q 
in the integrand. 

In N-dimensional space, the same kind of conclusion follows, except that 
the analogue of (8.78) is 

., 
exp(±ip·q) = (2'")N12(pq) 1 -N12 2 exp(±iTrk/2) 

k=O 

X JN/2+k-l(pq) 2 ykM(Qq)* ykM(Q11), 

M 
(8.81) 

where Qq and 0 11 are the collective labels for the angular variables of q and p 
in Eqs. (8.60) and Yk M(Q) are the spherical harmonics of rank k in N-space, 
M being a collective label for N > 3. [See, for instance, the book by Vilenkin 
(1968, Chapters IV and IX).] In N-space, definite transformation properties 
mean that we are dealing with functions of the kindfkM(q) =f(q)YkM(Qq). 
The spherical harmonics are orthogonal and complete on the space .!l'2(SN_ 1), 

so an analogue of the reduction (8. 79) leads to 

J(p) = p1 -N12 exp( -i'"k/2) l"" qN12 dqf(q)JN,2+k- 1(pq), (8.82a) 

f(q) = ql-N/2 exp(iTrk/2) {" pN/2 dp](p)JN/2+k-l(pq) (8.82b) 

for the radial parts of fk M(q) and its IF<N> transform. Again, for k = 0 
(invariance), we recover the Hankel-Bochner transform (8.66). 

For the same value of the Bessel function index, (8.80), (8.82), and (8.66) 
differ only by powers of q and p. These can be easily absorbed into the 
definition of the function to be transformed. It has thus been found con
venient to abstract the transform of the radial part from the number of 
dimensions of the original space and define the Hankel transform pair of order 
p. as 

{IHI,J){p) := fH"(p) = {"" dqf(q)(pq)l12Jipq), 

(IHJ;lfH~')(q) := f(q) = {"" dpfH~'(p)(pq)li2Jipq). 

(8.83a) 

(8.83b) 
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This is the form appearing in the Oberhettinger tables (1973) and has 
the advantage of symmetry in having the kernel a function of pq only. 

Most authors call (8.83) the Hankel transform, while our original pair 
(8.66) is referred to as the Bochner transform. The Hankel transform occupies 
a part of the books by Sneddon (1951, Chapter 2; 1972, Chapter 5). For 
further material on this and related transforms, the reader is referred to the 
specialized literature. On convolution there are articles by Griffith (1957, 
1958) and Raimo (1965); the latter deals in detail with applications. Extensive 
tables of Hankel transforms can be found in the Bateman manuscript project 
(Erdelyi eta!., 1954, Chapter VIII) and the tables by Oberhettinger (1973). 

8.4.7. Other Integral Transforms with Cylindrical Function Kernels 

Neumann transforms of order f.L replace the Bessel function kernel in the 
Hankel transform by a Neumann function (pq )112 Nv(pq ). [See Griffith (1958) 
and the Bateman manuscript project (Erdelyi eta!., 1954, Chapters IX and 
XI) for Y and H transforms.] The inverse transform contains a Struve 

function kernel (pq) 112H"(pq). A generalization of these involving Lamme! 

functions can be found in the Oberhettinger tables (1973, Chapter VI). 
Weber transforms of order f.L are defined when 

the annular membrane determinant function in Eq. (6.37), is used as an 
integration kernel on (a, oo). The inverse transform divides the direct kernel 
by liap)2 + N"(ap) 2 and integrates p on (0, oo ). See the original paper by 
Titchmarsh (1923) and one by Griffith (1956). 

The Meijer-Besse! or Meijer K transform of order f.L makes use of the 
kernel (pq) 112Kipq) containing the Macdonald function. The inverse trans
form integrates with a modified Bessel function (pq) 112I"(pq) over a Bromwich 
contour. Several Indian mathematicians have published articles on this 
subject (Verma, 1959; Saxena, 1959; and Sharma, 1963, 1965). The Bateman 
manuscript project [Erdelyi eta!. (1954)] devotes Chapter X to giving a table 
of these. This is actually a particular case of the Meijer transform, introduced 
by Meijer (1940) as a generalization of the Laplace transform whose trans
form kernels are exp( + pq )/2 · (pq )or k - 112 times the Whittaker functions 
Wk_ 112 ,m(pq) for the direct and Mk_ 112 ,m(pq) for the inverse transform. Both 
k and mare free parameters. Vilenkin (1968, Chapter VIII) gives many group
theoretical and special-function relations for integrals with Whittaker function 
kernels. 

Kontorovich and Lebedev (1938) introduced a particular integral 
transform for the solution of problems in diffraction. It involves as a trans
form kernel a Macdonald function of imaginary index K;q(p) over q E (0, oo) 
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and for the inverse transform the kernel 21r- 2 sinh(7Tq)K;q(p)fp, also over 
p E (0, oo ). Its relation with some of the Neumann series (Section 6.4) is akin 
to the relation of the Mellin transform with the Taylor series in Fig. 8.6. The 
conditions for validity of the transform pair were further explored by Lebedev 
(1947), and the transform was generalized (Lebedev, 1949a, 1949b). A 
transform table appears in the Bateman manuscript project (Erdelyi et a!., 
1954, Chapter XII) and in Oberhettinger (1973, Chapter VI). Sneddon (1972, 
Chapter 6) treats this transform in some detail and applies it to the study of 
harmonic functions in cylindrical coordinates. 

8.5. Other Integral Transforms 

For the most part, integral transforms can be seen as the continuous 
analogue of series expansions. The underlying unity is that the expanding 
functions in the series and the integral kernel in transforms are usually eigen
functions of a given operator, self-adjoint in some domain. In this section, 
after some rather soft-focus remarks on the Sturm-Liouville point of view, 
we shall examine a few examples as well as other transforms which, unnamed, 
have appeared before or which are common in the current literature. 

8.5.1. The Sturm-Liouville Problem and Integral Transforms 

Assume IHl is an operator which is self-adjoint in the (Hilbert) space of 
functions 2"2 (!2), where !2 s ~ wi~h some properly chosen boundary condi
tions. Assume, further, that we know its eigenfunctions, labeled uniquely by 
a (possibly collective) index p E f7J s (8£, ,q'), 

q E !2, (8.84) 

and its spectrum 2" = ,\(flJ) s 8£. The set of functions {'YP(q)}PEPl' can be 
shown under certain restrictions to constitute a generalized (Dirac) basis, 
orthogonal and complete for 2"2(!2). This is the generalized Sturm-Liouville 
problem, similar to the one sketched in Section 6.4. The spectrum, being a 
continuous set, however, is indicative of a considerably more delicate 
mathematical theory. The overall (simplified) features are not too difficult to 
state roughly: the orthogonal basis functions can be normalized so that 
Dirac orthonormality holds, 

('l'p, 'l'p.) = L dq'Yp(q)*o/p.(q) = 8(p _ p'), 

and completeness holds, 

L dp'Yp(q)*'Yp(q') = 8(q _ q'). 

(8.85a) 

(8.85b) 
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Although (8.85a) tells us that the 'Yp(q) do not belong to .2"2(..2), they do 
nevertheless form a generalized basis for that space so that for any f(q) E 

.2"2(.2) we can define its transform function, 

JT(p) == L dq'Yp(q)*f(q). (8.86a) 

and be assured that the inverse transform or synthesis reproduces (generally 
in the norm) the original function as 

f(q) = t dp'Yp(q)JT(p). (8.86b) 

This suggests seeing the integral transform-passive point of view; recall 
Section 1.3-as a change of basis, wheref(q) andfT(p) are the coordinates 
of the same vector f E .2"2(.2) in two bases, the latter in the {1¥p}pe£!i'-basis as 
(1¥P, f) = fT(p) and the former in the basis of Dirac S's, {Sq}qd, where 
(Sq, f) = f(q). Equation (8.86b) can be formally "proven" by multiplying 
(8.86a) by 'YP(q'), integrating over p E ~ exchanging integrals, and using 
(8.85b). Equivalently, multiplication of (8.86b) by 'YP.(q), integration over 
q E .2, and use of (8.85a) yield (8.86a). As a consequence of (8.84)-(8.86), the 
generalized Parseval relation, 

(f, g).2 = f.2 dqf(q)*g(q) = L dpfT(p)*gT(p), (8.86c) 

will also hold. 

8.5.2. Fourier, Mellin, and Repulsive Oscillator Transforms 

The Fourier transform (7.1) can be seen as stemming from the eigenbasis 
expansion of a defining operator Ill := - idfdq, self-adjoint on !2 = fJl [see 
Eqs. (7.55) and (7.56)]. Its eigenfunctions are (211)- 112 exp(ipq), p E 9 = fJl, 
and the spectrum is .2" = fJl. The set is an orthogonal and complete basis for 
.2"2(f1l). The defining operator can also be taken to be IP 2/2, whose eigen
functions are the same as above but whose spectrum is .2" = [Jl+ twice [as 
9 = (fJl+, ± )]. The latter has the advantage of defining, equivalently, the 
sine and cosine Fourier transforms: These are eigenfunctions of IP 2/2 but 
not of IP. 

The Mellin bilateral transform (8.26) can be built by looking for the 
eigenfunctions of the operator 1-(QIP + IPQ), namely, (2TT)- 1 '2q~-112. Here 
.2" = fJl, but 9 = (fJl, ± ), i.e., the spectrum covers fJl twice. Orthogonality 
and completeness (8.86) are given the forms (8.27) and (8.28). 

We also have the transform defined by the repulsive oscillator Schro
dinger Hamiltonian !(IP2 - Q 2), which is closely related to the Mellin 
transform. The eigenfunctions of this operator are the XP ±(q) found in (7.203). 
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They can serve to define a repulsive oscillator transform with the characteris
tics (8.84)-(8.86). 

Exercise 8.30. Show that if the defining operator is IP' 2 - (1-' 2 - t)IQ- 2 , self
adjoint on ..'l'2 (a?+), the resulting transform is the Hankel transform of order,_,. 
given by (8.83). 

8.5.3. Airy Transforms 

Usually, a solid link with the Fourier transform-for which the eigen
basis properties are well established-will prove the orthogonality and 
completeness for a given transform basis function set. This was the path we 
followed for Mellin, repulsive oscillator, and Hankel transforms. 

One more transform can easily be presented by this method. Consider 
the operator and corresponding eigenvalue equation 

(8.87) 

This equation happens to be the (time-independent) Schrodinger equation 
for the free-fall or linear potential. It was solved for A = 0, in (7.61)-(7.64), 
in terms of the Airy function. Actually that is almost all we need since 
'F/(q) = 'F0 1(q- A) is the solution of (8.87) in terms of the A= 0 solution, 
as can be ascertained by collecting all terms on the left-hand side and changing 
variables. We can thus write the solution to (8.87) in terms of (7.64) with a 
translated argument, viz., 

'F/(q) = 211s Ai[2113(q _ A)] (8.88) 

[having chosen c = {21r)- 112]. Moreover, we can easily show that the set 
(8.88), for A E {JJ, is orthogonal and complete. Indeed, the Fourier transform 
of (8.88) is given by (7.63), multiplied by an exponential factor due to 
translation [Eq. (7.28)]: 

'¥ r-'(p) = (21r)- 112 exp(- iilp) exp(ip3 /6). (8.89) 

Now, this set of functions is orthogonal and complete for p E f?li and A E {JJ, 

The last A-independent exponential factor does not alter this property, as can 
be shown by an argument parallel to that leading from the completeness of 
the bilateral Mellin basis to the completeness of the repulsive oscillator wave 
functions in Section 8.2. The inverse Fourier transform of (8.89), namely 
(8.88), will thus have the claimed property. Equation (8.88) defines the 
integral kernel of a transform which we can call Airy's transform. 

An integral transform (8.84)-(8.86), in the active point of view (recall 
Section 1.3), is quite obviously associated with a linear operator-that is, if 
jT(p) and gr(p) are the transforms ofj(q) andg(q), then ajT(p) + bgr(p) will 
be the transform of af( q) + bg( q) for a, b E '6" -and thus we can define a 
linear operator (H)(p) := jT(p). 
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Most of the transforms we have examined thus far are unitary (those of 
Fourier, bilateral Mellin, Hankel, repulsive oscillator, and Airy but not those 
of Laplace or ordinary Mellin). As the corresponding Parseval identities 
suggest, the mapping afforded by lf is isometric. The fact that 2'2(~) can bt> 
shown to be mapped onto itself under Fourier and Airy transforms makes 
the transform operators unitary [since 2'2(~) is a Hilbert space]. The Hankel 
transforms achieve the same for the (Hilbert) space 2'2(~+). The bilateral 
Mellin and repulsive oscillator transforms are also unitary, although they 
map 2'2(~) onto 2'+ 2(~) E8 2'_ 2(~) for the two values of the dichotomic 
index. Finally, the harmonic oscillator functions also provide a unitary 
mapping (7.180) of 2'2(~) onto J2, the (Hilbert) space of square-summable 
sequences. 

8.5.4. Gauss-Weierstrass Transforms 

Not all integral transforms are unitary though. When we look at the 
time evolution of systems governed by linear differential equations, linear 
mappings of functions through integral kernels become abundant. Consider 
the simple heat diffusion in one dimension described by the Green's function 
in (8.58) with initial conditions f(q) at time t = 0 and a2 = 1/2. Its time 
evolution is given by 

(GN)(q) := JG<0 (q) = (21Tt)- 112 L: dq'f(q') exp[ -(q- q')2!2t]. (8.90) 

This is a linear mapping of a large function space [containing 2'2(~)] into 

~~ "', which has been called the Gauss or Weierstrass transform at time t. 
Although the "total heat" J dqjc<o(q) is constant, the usual inner product 
(f, f) is not. Hence Gth is not a unitary transform in the usual sense. Never
theless, in Part IV we shall see that if an appropriate inner product is given, 
(8.90) can be turned into a unitary transform. The transform (8.90) and its 
inversion have an important bearing on the theory of heat diffusion. This was 
initially studied by Doetsch (1936) and Tricomi (1936, 1938). Since then, it has 
been the subject of several articles by Hartmann and Wintner (1950), Black
man (1952), Widder (1956, 1964), Rooney (1957, 1958, 1963), Bilodeau 
(1961), and Nessel (1965). There is one recent book on the heat equation by 
Widder (1975). 

8.5.5. Complex Extensions and Analytic Continuations 

A subject which will be more extensively developed in Part IV is the set 
of integral transforms obtained from the time evolution of four types of 
Schrodinger equations: (a) the harmonic oscillator, (b) the free particle, 

(c) the repulsive oscillator, and (d) the linear potential. The Green's functions 
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for these cases all have the general form exp[i(Aq 2 + Bqp + Cp2)] for A, B, 
and C complex. This will define (the semigroup of) complex canonical trans
forms. They are all unitary in the appropriate Hilbert spaces. 

Wave equations describing diffusive-elastic systems also provide integral 
transforms on pairs of functions representing elongation and velocity. They 
can be made unitary (thus far) only in the case when no diffusion is present. 
The inner product to appear in the Parseval identity is the sesquilinear form 
associated with the total energy of the system. 

Integral transforms between pairs of functions can arise also as analytic 

continuations of series. This rather cryptic remark applies to the case of the 
Mehler-Fok transform, which can be seen as a Sturm-Liouville problem or 
as an analytically continued version of the Legendre transform mentioned in 
Section 6.4. The latter expands functions as series of Legendre polynomials 
Pn(x). By complex contour integration techniques (usually referred to as the 
Sommerfeld-Watson transform), the series sum is replaced by an integral with 
a kernel (2v + l)Pv(x)Jsin 7Tv over v along a vertical path in the complex 
v-plane at p + ia for fixed p > -t and over a E f!il as shown in Fig. 8.6. This 
transform is used in high-energy elementary particle physics for relativistic 
scattering amplitude expansions in the direct and crossed channel [see the 
review article by Kalnins et a!. (1975, Section III-B and the references 
within)]. Application of this transform to the diffraction and reflection by a 
wedge has been made by Oberhettinger (1954, 1958). This transform has a 
family of group-theoretical generalizations related by relativistic partial-wave 
expansions. They have been amply discussed by Vilenkin (1968, Chapter X). 
Sneddon (1972) dedicates Chapter 7 in his book to the study of the Mehler
Fok transform and its applications. 

8.5.6. Hilbert Transforms 

Sturm-Liouville theory need not be involved in all transforms. In 
Section 7.4 we saw that the real and imaginary parts of the Fourier transform 
of a causal function were related by (7.146) (for a = 0) as 

fR(p) = 7T-lf?jJ L: dp'(p - p')- 1fi(p'), 

fi(p) = -7T-lf?iJ L: dp'(p- p')-lfR(p'), 

(8.91a) 

(8.91b) 

where :Y stands for the integral's principal value and the tildes have been 
dropped. Equations (8.91) define fi(p) as the Hilbert transform of fR(P ). As 
the definition of the Hilbert transform is closely related to analyticity, it has 
served, for instance, in constructing a generalized phasor formalism as for 
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alternating-current theory, which is applicable to general frequency-modulated 
signals. A given real signal a(t) and its Hilbert transform T(t) are merged into 
an analytic complex signal a(t) + iT(t) =: p(t) exp[iw(t)t], where p(t) is the 
signal envelope and w(t) the instantaneous frequency. As an example, we can 
recall the repulsive oscillator wave functions x" ±(q) in Eqs. (7.203), shown in 
Fig. 7.11. As XI\ +(q) is the inverse Fourier transform of a function having 
support on the positive half-axis, it follows that Im XI\ +(q) is the Hilbert 
transform of Rex" +(q). Figure 7.11 shows the envelope of the former to be 
lx" +(q)l. A sound mathematical treatment of the Hilbert transform can be 
seen in Titchmarsh's Fourier classic (1937, Chapter V) or, if available, in 
Cotler's dissertation (1953). Further work on the application of the Hilbert 
transform to the theory of causal filters can be seen in the article by Urkowitz 
(1962) and the books by Bracewell (1965, Chapter 11) and Sneddon (1972, 
Section 3-21). Tables of Hilbert transforms can be found in the Bateman 
manuscript project (Erdelyi eta!., 1954, Chapter XV). 

8.5.7. Stieltjes Transforms 

The Stieltjes transform is defined as the square of the unilateral Laplace 
transform: 

p(q) = (IL.2f)(q) = L'' dq" exp( -qq") ioo dq'f(q') exp( -q"q') 

= LO) dq'(q + q')-lJ(q'). 

The original function is regained as 

J(q) = (27Ti)-l lim [Js(-q- ie) -P(-q + ie)], 
e-+o+ 

(8.92a) 

(8.92b) 

as can be ascertained by noting that (8.92a) is related to the Cauchy represen
tation (7.136) by a change of sign in the argument and a factor of 27Ti. Iff( q) 
is continuous at q, (8.92b)follows from Eq. (7.137d). If f(q) is discontinuous, 
one has to substitute as usual, lim,~ 0 +[f(q + e)+ f(q- e)]/2 for the left
hand side of (8.92b). The Stieltjes transform arose from the Stieljes moment 
problem (Titchmarsh, 1937, Section 11.9). It has been investigated thoroughly 
by Widder (1937, 1938) and occupies Chapter VIII of his 1941 book. Several 
generalizations of the Stieljes transform involve higher powers of the 
denominator in (8.92a) [in Widder's book (1941)], a hypergeometric function 
(Varma, 1951), or a Whittaker function (Arya, 1963). Tables of Stieltjes 
transforms can be found in the Bateman manuscript project (Erdelyi et a!., 

1954, Chapter XIV). 
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8.5.8. Convolution Transforms 

Integral transforms or various general types have been further considered 
in the literature. One class involves the convolution transform, which is of the 
general form 

JG(p) = L: dqf(q)G(p- q), (8.93) 

where G is a rather general function including, for instance, the diffusion 
transform kernel. Various properties of the construct (8.93), the possibility of 
inversion, and its relation to hyperdifferential operators have been the subject 
of the book by Hirschmann and Widder (1955). Browsing through the list of 
references in Widder's books, one discovers many other transforms associated 
with as many other names. It will serve us to close the list here and reserve 
Part IV for the presentation of canonical transforms. 
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Part IV 

Canonical Transforms 

The aim of this part is to introduce a class of integral transforms which 

include, as particular cases, most of those which were discussed in Part III. 

It is a parametrized continuum of transforms which share several basic 

properties and which can be subject to composition. In fact, they constitute 

a Lie semigroup. For the benefit of the general reader we shall present these 

developments independently with a minimum of explicit use of Lie theory. 

Chapter 9 is devoted to the construction of the integral transform set, and 

Chapter 10 applies this tool to the deeper study of the diffusion equation and 

a class of Schrodinger equations. The ease and generality of the method, we 

hope, will spur the interested reader to acquaint himself with the growing 

research literature on the subject. 

Chapter 9 Chapter 10 

L.__§__9.~ __ ,_9.2_,_(ib_9.3____.1----·l ~-·~ 

379 
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9 

Construction and Properties 
of Canonical Transforms 

In this chapter we present a class of integral transforms which we shall call 
canonical transforms. These constitute a parametrized continuum of trans
forms which include the Fourier, Laplace, Gauss-Weierstrass, and Bargmann 
transforms as particular cases. As these have arisen quite recently, we shall 
include brief historical sketches of the developments which led to their 
recognition and refer the interested reader to the research literature for a 
more rigorous treatment. Section 9.1 deals with rea/linear canonical trans
forms, while Section 9.2 enlarges the set to complex ones. The former appeared 
a couple of times before Moshinsky and Quesne (1974) called attention to 
their significance in connection with canonical transformations in quantum 
mechanics. A particular case of the latter was developed by Segal (1963) and 
Bargmann (1961) in order to formalize Fok's boson calculus (1928). Section 
9.3 shows that canonical transforms have a hyperdifferential operator 
realization in addition to the usual integral form. Several examples and 
exercises show the economy of concepts and computation introduced by this 
new technique. 

9.1. Real Linear Canonical Transforms 

There are several ways to introduce the subject matter of this chapter. 
We have chosen here the approach which constructs canonical transforms as 
those unitary transformations which map the operators Q and I? of Section 
7.2 into real linear combinations of themselves. One finds several instances 
in the mathematical physics literature where this problem has been tackled. 
Infeld and Plebaiiski (1955) and, later and independently, Moshinsky and 

381 
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Quesne (1971a, 1971b) have constructed unitary transformation operators in 
quantum-mechanical phase space in a group-theoretical context, as have 
ltzykson (1969) and Bargmann (1970). We present here the integral transform 
aspects of this construction. 

9.1.1. Posing the Operator Problem 

One of the main properties of the Fourier transform is that the operator 
iQ of multiplication by the argument [i.e., (iQf)(q) = qf(q), Eq. (7.55)] is 
transformed into the operator IP of differentiation [i.e., (IPf)( q) = - idf( q )fdq, 
Eq. (7.56)] and vice versa with a minus sign [Eqs. (7.57)]. Such transformation 
properties are remindful of a rotation by 7Tj2 in a "iQ-IP phase-space" plane. 
This is actually the case, without quotation marks, in the Schrodinger 
quantum-mechanics formalism. On a purely mathematical basis, however, 
we propose to investigate linear operators IC which turn iQ and IP into linear 
combinations of each other, 

iQ' := ICQIC- 1 = diQ - biP, 

IP' := ICIPIC - 1 = - ciQ + alP, 

(9.la) 

(9.lb) 

where the constants a, b, c, and d are real-in this section. There is one 
restriction: the commutator of (9.la) and {9.lb) [defined as in (7.59b) and 
using (7.65)] is 

[iQ', IP'] = [diQ - biP, -ciQ +alP] = i(ad- bc)1 

= IC[iQ, IP]IC- 1 = i1. 

The four parameters must therefore relate by 

ad- be= 1. 

(9.2) 

(9.3a) 

The Fourier transform, we see immediately, corresponds to the particular 
case a = 0 = d, b = 1 = -c. The identity transformation corresponds to 
a = 1 = d, b = 0 = c. We shall label the transform operator as eM by the 
unimodular matrix 

det M = I. (9.3b) 

This operator ICM can be made to act on an appropriate space of func
tions 8?11 • The action is linear, i.e., 

ICM(c1f + c2g) = c11CMf + c21CMg, cl> c2 E ri', f, g E f181> (9.4) 

and, due to (9.1), it has the following property: if the ICM transform off(q) 
isJM(q') = {ICMf){q'), then the ICM transform ofqj(q) will be 

{ICM!Qf)(q') = (ICMiQIC,\/fM)(q') = ((diQ - biP)fM)(q') 

= dq'JM(q') + ib dJM(q')fdq'. (9.4a) 
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Similarly, the eM transform of (IP'f)(q) = - i df(q)fdq is 

(eMIP'f)(q') = (eMIP'eMlfM(q') = (( -cQ + aiP')fM)(q') 

= -cq'fM(q') - ia dJM(q')fdq'. 

9.1.2. Integral Transform l!.nd Kernel 

(9.4b) 

As a concrete realization of the linear operator eM we can propose an 
integral transform with a kernel CM(q', q): 

JM(q') = (eMf)(q') :=I dqf(q)CM(q', q), 
9f. 

(9.5) 

where the integration takes place over the full real line Bll. Linearity is auto
matically satisfied by the integral form, while conditions (9.4) will determine 
the kernel function CM(q', q) up to an arbitrary multiplicative constant. The 
extreme members of (9.4a) and (9.4b) with (9.5) are 

t dq·qf(q)CM(q', q) = ( dq' + ib d~') t dqf(q)CM(q', q), 

(9.6a) 

t dq[ -i df(q)fdq]CM(q', q) =- ( cq' + ia d~') t dqf(q)CM(q', q). 

(9.6b) 

A sufficient condition for (9.6) to hold is that CM(q', q) satisfy the following 
differential equations: 

qCM(q', q) = (dq' + ib a:,)cM(q', q), (9.7a) 

i :q CM(q', q) = - ( cq' + ia 8:,) CM(q', q), (9.7b) 

where the second one was obtained by integration by parts of the first 
integral in (9.6b) under the assumption that 

f(q)CM(q', q)l;'=- ro = 0. (9.7c) 

This will help in the selection of the space &11 to which f( q) can belong. 
Proposing a solution of the kind exp(Aq 2 + Bq'q + Cq'2), we find upon 

replacement that A = iaf2b, B = -if b, C = i df2b. The integral kernel is 
thus 

CM(q', q) = (JM exp[i(aq 2 - 2q'q + dq' 2)/2b]. (9.8a) 

The choice of the multiplicative constant 

(JM = (27Tb)- 112 exp( -i7T/4) 

will be seen to be convenient later on. 

(9.8b) 
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For real parameters, the behavior of the kernel (9.8) is that of a function 
which oscillates strongly for large I q I and I q'l but whose modulus is fixed at 
(27TibJ)- 112 . (The limit b-+ 0 is interesting but will be deferred until later in 
this section.) The validity of the assumed boundary condition (9.7c) can be 
seen to be the same as for ordinary Fourier transforms. We shall thus let 
&81 be 2"2(9i'). 

9.1.3. Inversion 

The inversion of the ICM transform (9.5) with real parameters is easily 
accomplished with the help of the Fourier transform. We shall show that 

(ICi/fM)(q) = !~~ -!-[f(q + e) + f(q - e)] = Ll~~rL dq'JM(q')CM(q', q)*. 

(9.9) 

If we substitute (9.5) and (9.8) into (9.9) and use the Fourier integral theorem 
(7.3), we obtain 

lim JL dq''J' dq''f(q")CM(q', q")JCM(q', q)* 
L-+OO -L L ~ 

= lim JL dq' J' dq''f(q")(27Tibl)- 1 
L~oo -L g? 

x exp[i(aq"2 - 2q'q" + dq' 2 - aq 2 + 2q'q- dq' 2)/2b] 

= (27Tibl)- 1 exp( -iaq2f2b) lim JL dq' { dq" 
L-+oo -L J[H 

x exp(iaq"2/2b)f(q") exp[iq'(q- q")/b]. 

The last step leads to (9.9) by a simple change of variables for q'. 

(9.10) 

Exercise 9.1. Prove the Parseval identity for real linear canonical transforms 

{ dqf(q)*g(q) = [ dq'JM(q')*gM(q'). 
JB? .g? 

(9.11) 

The second integral is meant to be taken as limL~"' f~L· Note carefully that 
(9.11)-and (9.9)-are valid strictly for real parameters. 

The function fM = CMf given by (9.5) is the real linear canonical ICM 
transform of f. For each matrix M we have a corresponding transform. This 
class of transforms has been called Moshinsky-Quesne (1971a, 1971 b, 1974) 
transforms since they were recognized as such at the Solvay conference in 
Brussels (1970) and in their contiguous 1971 papers. [In attributing names of 
living authors to their mathematical constructs, care and tact must be used. 
Thus it should be noted that as a group-theoretical problem similar formulas 
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in a related but not identical context were derived by Infeld and Plebafiski 
[1955, Eqs. (3.4)], Bargmann (1970, Section 3), and Kalnins and Miller 
(1974), Section 3. This representation has been called the metaplectic repre
sentation byWeil (1963); it is presented, for instance, by Burdet eta!. (1978, 
Section 5).] 

We have stated before that the Fourier transform is a unitary mapping of 
2'2(~) onto itself. This property holds for all real linear canonical transforms 
with the inner product defined-as usual-by 

(f, g)l == L dqf(q)*g(q). (9.12) 

We would not bother to write (9.12) again were it not for the fact that a more 
general inner product will appear in Section 9.2, when the matrix parameters 
(9.3) are allowed to go complex. Thence the index "1" in (9.12). 

9.1.4. Composition of Transforms 

As we have a three-parameter continuum of canonical transforms, we 
may ask about the possibilities of composition of the elements of the set. 
Assume Q and IP' are transformed into Q' and IP'' by ICM1 as in (9.1) and that 
the latter are in turn transformed into Q" and IP'" by ICM2 by a similar action. 
The relation between the double-primed and the original operators is then 

Q" = ICM2i!J'ICM; = ICM2 1CM1i!J(ICM21CMJ-l 

= ICM2(dlQ - bliP')ICi1; = dliCM,I!JCi1; - bliCM2 1P'ICi1; 

= (c2 b1 + d2d1)Q - (a2b1 + b2d1)1P' =: ICM12ilJICi1;2 , (9.13a) 

IP'" = ICM21P'Ti1; = ICM21CM11P'(ICM21CMJ -l 

= ICM2(-clQ + aliP')ICi1; = -cliCM2 ilJICi1; + aliCM 21P'ICi1; 

= -(c2al + d2c1)Q + (a2a1 + b2b1)1P' =: ICM121P'ICi1;2, (9.13b) 

where 
rp E '6', (9.14a) 

(9.14b) 

By thus acting on the operators Q and IP', the composition of ICMz and 
ICM1 (so that ICM1 acts first and ICM2 second) is a ICM2M1 transform with the 
parameters of a matrix which is the product of the parameters of the matrices 
of the constituent transforms. We have left a free parameter rp in (9.14a) since 
the similarity transformation, involving ICM21 and cM;l, allows for ICM21 and 
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CM2 M 1 to differ by a constant factor. Whether or not this factor can be chosen 

to be unity will be seen as we explore now the composition of CM transforms 

on function spaces. 
Allowing for exchange of integration order, as the intermediate trans

formed functions are assumed to exist, we must prove the last equality in 

(cM.cMl)(q") = L dq~[L dqf(q)CMl(q 1
, q)]cM2(q", ql) 

= L dqf(q) L dq 1CM.(q", q 1)CMl(q 1
, q) 

Jo rp L dqf(q)CM2M,(q", q). (9.15) 

In performing the integration over q 1 we must deal with an integrand 

of the form exp[i(r 2q 12 + sq 1
)], which we now proceed to calculate for 

complex rands. The added generality will serve us later. Completing squares, 

we obtain 

I(r, s) := J dq 1 exp[i(r 2q 12 + sq 1
)] 

~ 

= exp( -is 2/4r 2) L dq 1 exp[i(rq 1 + sj2r)2 ]. (9.16a) 

In reducing the last integral to Euler's, which involves exp( -x2), change 

variables to 
x := exp( - i7Tj4)(rq 1 + sj2r); (9.16b) 

the integration path will be a line in the complex plane inclined at an angle 

-7T/4 + arg r and passing through the point x = exp(- i7Tj4)sj2r. As the 

integrand is entire analytic in the whole complex plane, we are allowed to 

shift the integration contour to pass through the origin of the complex 

x-plane. If r is in the first or third quadrant [Fig. 9.l(a)], the integration 

a b 
Fig. 9.1. (a) Allowed (unshaded) quadrants for the parameter r and (b) integration 

contours for the integral (9.16). 
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contour advances in the TT/2 sector centered on the +Rex or the -Rex 
axes, respectively [Fig. 9.l(b)]. In these cases the integrand is a decreasing 
Gaussian function which is integrable by a standard Cauchy-Jordan argu
ment which rotates the contour back to the real axis. If arg r is in the first 
quadrant, the integral reduces to Euler's Tr112, while if arg r is in the third 
quadrant, there will be a reversal of the integral bounds, yielding -Tr112• 

When r lies on the real or imaginary axes, the integral in (9.16a) exists only 
in the sense lim£~"' J~ L' which can be evaluated to be the limit of the integral 
as r approaches these axes from the allowed regions. Hence, 

Jarg r - TT/41 "( TT/2, 

(9.16c) 

([J(r) := {1 
-1 

if arg r E [0, Tr/2](mod 2TT), 

if arg r E [ -TT, -Tr/2](mod 2TT). 
(9.16d) 

Convergence will be absolute when the strict inequality on arg r holds. 
We can now establish the result we claimed in (9.15), as 

L dq'CM2(q", q')CM/q', q) 

= eM2eM1 eXp[i(alq 2j2bl + dzq"2 /2bz)] 

X I((az/2bz + dlf2bl)l 12 , - (q"fbz + qjbl)) 

= eM 2/p(bzl/bzbl) exp[i(a21q 2 - 2q"q + d21q"2)/2bzl] 

= rp(bz1/b2b1)CM 21 (q", q), (9.17) 

where we have collected the terms in the exponents and used the algebraic 
equalities in (9.14b) (in particular, note that a2/b2 + ddb1 = b21 /b2b1). We 
see that the arbitrary constant rp has been made unity by the proper choice of 
modulus of eM in (9.8b), while the phase of (9.8b) assures us that, for 
b1, b2 , b21 > 0 at least, the constant is unity. It turns out to be impossible to 
redefine the phases eM so as to get rid of rp in the composition formula (9.17). 
[In group theory, the kernels CM are said to constitute a ray representation 
of the group SL(2, 81?) of 2 x 2 unimodular real matrices.] Note carefully 
that we have proven the validity of the composition formula for complex 

values of the parameters. The only restriction has been that the integrand in 
(9.16a) be a bounded function. 

Exercise 9.2. Show that the composition relation (9.17) is associative, 
namely, that (CM3 CM2 )1CM 1 = CM 3 (CM2 CM 1 ). This is slightly tedious, but the fact 
that no extra phase enters into this relation is important. 

Having shown that the unitary linear real canonical transforms CM 
multiply as the parameter matrices do-modulo a sign-we would like to see 
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that the other two axioms of group composition (Section 1.4) also hold. 
These are the existence of an identity element and the inverse for every 
element in the set. 

9.1.5. The Identity Transform Limit 

The identity ICM transform, we should expect, corresponds to the unit 
matrix M = 1. The integral kernel (9.8) looks peculiar in this case, as it does 
for the whole class of lower triangular matrices M which have the 1-2 element 
b = 0. We shall prove that forb -7 0 the integral kernel provides a sequence 
of oscillating Gaussians whose limit (in the weak sense of Section 7.3) is a 
Dirac 3. To this end we use (9.3a) to replaced in (9.8) and write 

CM(q', q) = (JM exp{i[aq 2 - 2q'q + a- 1(1 + bc)q'2]/2b} 

= (JM exp(icq'2/2a) exp[i(a1'2q- a- 112q')2j2b] 

= f3 exp(icq'2j2a)G1b 1(f3(a112q- a-112q')), (9.18a) 

where we have used the Gaussian function (7.20) and defined the phase 

f3 := exp[ -i(1rj2 + arg b)/2]. (9.18b) 

Again, it will behoove us to work with complex parameters so as to under
stand the multivaluation features of the set of transforms. Note first that the 
integral transform (9.5) exists in 2 2(8?) only when (9.8a) is bounded. This 
means 

Re(iajb) ~ 0 or Im(ajb) ~ 0, 

and 

I.e., arg(ajb) E [0, 1r] (mod 21r), 

(9.19a) 

if a = 0, then Im b = 0. (9.19b) 

The phase of the Gaussian's argument q is a := arg(f3a112) = t arg(a/b) - 7Tj4. 
Hence, if arg(ajb) E [0, 1r], a E [ -7T/4, 7Tj4], while if arg(a/b) E [ -27T, -1r] or 
[27T, 37T ], a E [- 57Tj4, - 37T/4] or [37T/4, 57T/4]. Thus in the first interval, f3a1'2 
lies in the "forward" sector of Fig. 9.l(b), while in the last two it lies in the 
"backward" sector of the same figure. The upper and lower sectors are 
forbidden. Although the Gaussian in (9.18a) has a complex argument, we 
can relate its lbl -7 0 limit to a Dirac 8 showing that (a) for any q # a- 1q' 
the function either vanishes (for lm b # 0) or oscillates with infinite rapidity 
(for Im b = 0); (b) the integral of the function over !!l is finite: 

lim i dqGibt(f3(a112q- a-112q')) = f3-1a-112 lim f dxGibl(x- f3a-112q') Jbl~o 91! lbl~o Ja91! 

= f3-1a-1!2'P((a/b)112), (9.20a) 
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where we have made use of the integration contour deformation of Fig. 9.l(b) 
and introduced the phase function (9.16d). Hence 

lim Glbl(f3(a112q- a-112q')) = f3-1a-112cp((afb)112)S(q- a-1q'). (9.20b) 
lbi-O 

Substitution of (9.20b) into (9.18) yields, for JbJ-+ 0 and (afb)112 in the first 
complex quadrant, 

lim CM(q', q) = a- 112 exp(icq'2/2a)S(q- a- 1q'), 
lbl-o 

(9.21) 

while if (afb)112 is in the third complex quadrant, a minus sign is necessary. 
Near to the identity matrix, the parameter a is near to unity, cis near to 

zero, and if we agree to let b approach zero from the lower complex half-plane, 
including the real axis, then 

lim CM(q', q) = S(q - q'). 
1\1-1 

(9.22) 

The integral kernel thus acts as the simple reproducing kernel for functions 
under integral transformations. Equation (9.22) thus constitutes the identity 
for the group of real linear canonical transforms. This result determined our 
choice of phase for OM in (9.8b). 

Equation (9.21) also specifies the action of the operators for the class of 
lower-triangular matrices M (b = 0), as 

(9.23) 

These will be called geometric transformations. They consist of dilatations 
by a and/or multiplication by an oscillating Gaussian of (imaginary) width 
afic. Note that the three parameters of M in (9.3b) have dropped to two, 
aandc,asd=a- 1 • 

Exercise 9.3. Compare the case of dilatations in (9.23) with (7.34) and with 
(7.71). Verify that the multivaluation "paradoxes" disappear in the complex 
parameter plane. 

As to the inverse of the canonical transform CM, we remark that the 
inverse of the 2 x 2 unimodular matrix Min (9.3b) is 

M_ 1 :== ( d exp( -i-rr)b). 
exp(i11-)c a 

(9.24) 

We have used the sign definition since, insofar as matrices are concerned, 
the 1-2 matrix element is simply -b, the sheet in the complex b-plane being 
irrelevant. Due to the bivaluation property of the canonical transforms, 
- b = exp(in7T )b for n = ... , - 1, 3, 7, ... , etc., is needed. In this case, from 
(9.8) it follows that 

(9.25) 
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Comparison with (9.9) shows that this is the proper transform kernel for the 
inverse of the real canonical transformation eM. Note that b and exp(- i?r)b 
correspond to (a/b)112 on the same parameter quadrant [Fig. 9.l(a)] for a 
close to unity in eM and eM 1• 

9.1.6. One-Parameter Transform Subgroups 

We have shown that the set of real linear canonical transforms eM 
forms a group of unitary transformations of ff2(&1) onto itself, in correspon
dence with (as a two-valued ray homomorphism of) the set of real 2 x 2 
unimodular matrices M. This group will be denoted, as is customary in the 
literature, by SL(2, &1), meaning special (unimodular) linear group in two 
real dimensions. It will prove worthwhile to examine in detail some of the 
one-parameter subgroups of SL(2, &I) and establish some connections with 
previously treated transformations. The fact that each set constitutes a group 
by itself is evident. 

(a) Dilatations [recall Eqs. (7.34) and (7.71)], Eq. (9.23): 

Md(a) := (~ ~- 1 ). (eMf)(q') = a-112J(a-1q') = ([)laf)(q'). 

(9.26) 

(b) Imaginary Gauss-Weierstrass transforms [recall Eqs. (7.74), (7.75), 
and (8.90), setting the parameter w or t to pure imaginary values]: 

M 1( -b):= (~ ~), 

(eMf)(q') = OM L dqf(q) exp[i(q- q')2/2b] = (G,bf)(q'). (9.27) 

(c) Multiplication by a Gaussian of imaginary width, from (9.23): 

(eMf)( q ') = exp(icq' 2 /2)/( q '). (9 .28) 

Exercise 9.4. Because of the composition property (9.17), show that (almost) 
every CM E S£(2, ~) can be written as the product of elements of the three sub
groups (9.26)-(9.28), following the decomposition 

( a b) ( 1 0) (a 0 ) (1 bfa) M = = _ = M 9(cfa)Md(a)M1(- bfa). 
c d cfa 1 0 a 1 0 1 

(9.29) 

This fails, however, for the special class of M's with a = 0, including the Fourier 
transform. 
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There is another triad of one-parameter subgroups of SL(2, ~) which 

avoids the failure in Exercise 9.4 and has by itself some interesting properties. 

The subgroups are 

(a) Hyperbolic subgroup, defined as 

( 
cosh(a/2) 

M = -sinh( a/2) 
-sinh( a/2)) 
cosh(a/2) ' 

aE~. (9.30) 

(f3) Parabolic subgroup, defined as the subgroup of dilatations but for 

a = exp(- {3/2), f3 E ~-

(y) Elliptic subgroup, defined by 

M = (cos(y/2) 
sin(y/2) 

- sin(y/2)) 
cos(y/2) ' 

y = y mod 47T. (9.31) 

The last subgroup is interesting since for y = - 1T the corresponding integral 

kernel can be seen to be essentially the Fourier transform, but for a phase 

ICF = exp( -i7T/4)1F, F := ( 0 1). 
-1 0 

(9.32) 

[The reader familiar with Lie group theory will see immediately that the 

hyperbolic and elliptic subgroups can be used to decompose SL(2, ~) ~ 

SO (2, 1) uniquely and parametrize I[:M by Euler angles on a hyperboloid.] 

Exercise 9.5. A decomposition of the general canonical transform ICM which 
involves the Fourier transform can be made by 

( a b) (b 0 ) ( 0 1) ( 1 0') 
c d = d b- 1 -1 0 a/b 1 ' 

(9.33) 

which means that a function is first multiplied by Gaussian (9.28) and then 
Fourier-transformed; finally it undergoes a "geometric" transformation (9.23). 

Exercise 9.6. Using (9.1), show that the following self-adjoint operators are 
left invariant under the corresponding subgroups of canonical transforms: 

Jz := ;}(1.]11P' + IP'Q) =: !IHJd [under (a) or (/3)], (9.34a) 

tiP'2 =: IHJf [under (b)], (9.34b) 

j.Q2 =: IHJ9 [under (c)], (9.34c) 

Jl := t(IP'2 - Q2) =:tiHI' [under (a)], (9.34d) 

Jo := t(IP'2 + Q2) =:tiHJh [under (y)]. (9.34e) 

[Operators Ji have appeared before, in Eqs. (7.174).] Note that this implies that, 
under aiiiCM transforms of each subgroup, the eigenfunctions of the corresponding 
operator will transform into multiples of themselves, that is, they will be self

reciprocal under ICM. Thus, the eigenfunctions of J 0 are the harmonic oscillator 
wave functions of Section 7.5 which were built as self-reciprocal under the 
Fourier transform. They are also, therefore, self-reciprocal under any elliptic 
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ICM transform (9.31). The eigenfunctions of the repulsive oscillator are the x11 = 
functions (7.203), self-reciprocal under hyperbolic ICM transforms (9.30). The free
particle Schrodinger eigenfunctions of IHJf, basis for the Fourier partial-wave 
decomposition, are self-reciprocal under imaginary-and real-Gauss-Weier
strass transforms. Eigenfunctions of Jl2 are the basis functions for the Mellin 
transform and are self-reciprocal under dilatations. Finally, the eigenfunctions of 
IHI• are in general displaced Dirac S's. Multiplication by a Gaussian obviously 
leaves them as multiples of themselves. A description of self-reciprocating 
functions can be found in Wolf (1977a, and the references therein). 

Exercise 9.7. Note that Jl 1 in (9.34d) can be transformed into Jl2 in (9.34a) 
by a linear, real canonical transform: 

and thus the eigenfunctions X11 =(q) of the repulsive oscillator Hamiltonian IHI' 
are the IC.A 1 transforms of the Mellin-basis functions (27T)- 112q;i; 111 - 1'2, eigenfunc
tions of Jl2. Show that this is precisely the way they were found in Eq. (7.203a), 
although the process appeared more circuitous there. Note also that [Eqs. (9.32) 
and (9.35)] A2 = F. The transform ICA thus qualifies as the square root of the 
Fourier transform, i.e., x11 = = (277)- 112 IF- 112q;i; 111 - 112, but for a constant phase. 
[Watch out for a dummy change of scale in p in Eq. (7.203a).] 

Exercise 9.8. Show that the parity of a function is preserved under linear 
canonical transforms. 

Exercise 9.9. Study the ICM version of convolution. Let JM(q') and gM(q') 
be the ICM transforms of f(q) and g(q), respectively. Show that the real ICM 
transform of h(q) ';:: f(q )g(q) is 

hM(q') = L dql fBl dqdM(ql)gM(q2)C<M>(q'; qlo q2), 

where 

C<M>(q'; qh q2) ';:: JBl dqCM(q, q')CM(q, ql)*CM(q, q2)* 

= exp(- i7T/4)[27Tba112]-1 

(9.36a) 

x exp{i[a d(q 2 - q12 - q22) + (q - q1 - q2)2]/ab} (9.36b) 

is the ICM coupling coefficient. [Recall the convolution structure and coupling 
coefficients for the finite case in Eqs. (3.3)-(3.4).] Verify that for the Fourier 
transform (9.32) the usual convolution formula (7.43) is regained. 

Exercise 9.10. Show that the product of the dispersion 6.1 of a function/(q) 
[Eq. (7.217)] times the dispersion /:l1M of its real ICM transform is given by 

f:lf/:l/M ;;;. b2/4. (9.37) 

This generalizes Heisenberg's Fourier uncertainty relation (7.218). 
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The program of unifying several different integral transforms as particu
lar cases of canonical transforms is quite incomplete up to this point. The 
Fourier transform and its inverse transform have been successfully incor
porated into a continuous SL(2, fR) group, but other transforms such as 
those of Laplace and Gauss-Weierstrass are still outside the general case 
(9.8). If we allow ourselves to tamper with the reality of the parameters we 
see that for 

we have the bilateral Laplace transform kernel and for 

(~ -ib) 
I ' 

b ~ 0, 

the Gauss-Weierstrass kernel. In Section 9.2 we shall see that other important 
transforms appear, notably the Bargmann transform. We shall let the para
meters go complex but shall be required to amend the inner product of the 
transform space so as to preserve unitarity. Comments on canonical trans
forms other than linear ones will be deferred until the end of Section 9.2. 

9.2. Complex Linear Transforms and Bargmann Space 

The creation and annihilation operators for the quantum harmonic 
oscillator presented in Section 7.5 have commutation relations [see Eqs. 
(7.163)] which suggest their representation as 7L f-7 dfdz and 7l_t f-7 z. This was 
done quite early by Fok (1928), following the lead of Schrodinger. The 
ensuing developments made use of the considerable algebraic simplifications 
which "boson calculus" brought both in second-quantized field theories and 
in many-body quantum systems which were based, in one form or another, 
on harmonic oscillator models [see Biedenharn and Louck (1979, Chapter 5)]. 
The fact remained, however, that the dagger of the 7l_t in the Fok representa
tion did not mean the adjoint of 7L, as d/dz is not the adjoint of z under the 
usual .P2(fR) inner product. Segal (1963) and Bargmann (1961, 1967) put 
Fok's representation on a proper mathematical frame by the introduction of 
a Hilbert space of analytic functions. 

During a visit to Mexico in 1972, Professor Peter Kramer suggested 
some problems in nuclear cluster theory which could be solved by the 
complexification of the linear transformation parameters of Moshinsky and 
Quesne (197la, 197lb). This was accomplished in 1973 (Kramer eta/., 1975; 
references to the original canonical transformation program can be found 
within). The present formulation was completed shortly thereafter (Wolf, 



www.manaraa.com

394 Part IV · Canonical Transforms [Sec. 9.2 

1974a) during the author's stay at the Centre de Recherches Mathematiques 
in Montreal, Canada. Further works will be cited as they arise. 

9.2.1. Introducing an Inner Product 

The original setup in Section 9.1 was to describe the SL(2, ~)canonical 
transformation OperatOrS (:M aS those Which transform linearly the pair Of 
operators Q and !P as 

( 0 ') = c (0 )c-l = M-1(0 ) [Pl' M [P M [Pl , (9.38) 

We are using here a rather obvious vector notation. When the parameters of 
M are allowed to go complex, we retain most of the results of Section 9.1 
such as the transform kernel (9.8) with the restrictions (9.19) and its com
position properties. What falls through is the unitarity of the transform [in 
mapping .2"2(~) into itself] and consequently the inversion formula (9.9). 
The primed operators (9.38) are no longer self-adjoint under the .2"2(~) inner 
product (9.12). Instead, 

(Q't) = M*-l(Qt) = M*-1(0 ) = M*-lM(Q') 
[P't [Pt !P !P' ' 

(9.39) 

where M* is the matrix whose elements are the complex conjugates of those 
of M. Of course M*- 1M = 1 if and only if M is real. In asking for self
adjointness, an inner product and a space of functions, domain of the 
operator, must be specified. Accordingly, if we are able to define a sesqui
linear inner product (fM, gM)M such that Q' and !P' do satisfy (I!J'fM, gM)M = 
(fM, Q'gM)M and correspondingly for !P, then unitarity ofCM could be upheld 
in the form 

(9.40) 

which would then be the new form of the Parseval identity. As we shall show 
in proceeding to implement this program, the inversion formula follows. 
We first characterize the function space !JIJM to which (CMf)(q') belongs as 
determined from the transform kernel CM(q', q) in (9.8) with the restrictions 
(9.19) andf(q)E.!t'2(~). We claim that (forb not real)JM(q') is an entire 
analytic function. This means that the functions have a convergent Taylor 
series in q' in the whole complex plane. Thus they have no singularities except 
at the point at infinity, and they are functions of q' only, and not of its complex 
conjugate q '*. This property can be seen from the fact that the Taylor 
expansion (CMf)(q') converges everywhere in the complex plane since the 
integrand contains a decreasing Gaussian in the integration variable and is 
entire analytic in q '. Note that as I q 'I --+ oo along a ray in the complex plane, 
a Gaussian G w -1( q ') is a decreasing function of I q I along the direction where 
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Fig. 9.2. Real part of the Gaussian 
function in the complex 
argument plane. The 
width is w = t, Re q and 
Im q are plotted in the 
interval (0, 3), and the 
vertical scale is in units 
of rr- 112 • We have marked 
the bisector line Re q = 
Im q, where the function 
oscillates with increasing 
rapidity. This line sepa
rates the "convergent" 
from the "divergent" 
directions. 

arg w + 2 arg q = 0, increasing at right angles to it and oscillating along the 
bisectors. See Fig. 9.2. It is for entire analytic functions of at most Gaussian 
growth that the inner product ( · , · )M for !39M can be defined. Specification of 
this growth will be done below. 

9.2.2. The Weight Function 

Bargmann (1961) has proposed the following sesquilinear inner product 
form involving q and its complex conjugate q *, 

(f, g)M = L d 2!LM(q, q*)f(q)*g(q), 

where the integral is taken over the complex q-plane 1? with 

d 2fLM(q,q*) = vM(q,q*)dReqdlmq =:vM(q,q*)d2q. 

(9.4la) 

(9.4lb) 

The weight factor vM(q, q*) will depend on M and on the independent variables 
q and q *. This weight function will be found for !39M by requiring that 
(Q'f, g)M = (f, Q'g)M and (IP'f, g)M = (f, IP'g\H· It will be easier to set up the 
determining equations from Q and IP as 

where 

(Qf, g)M = ((aQ' + biP')f, g)M = a*(f, Q'g)M + b*(f, IP'g)M 

= (f, (uQ + iviP')g)M, (9.42a) 

(IPf, g)M = ((cQ' + diP')f, g)M = c*(f, Q'g)M + d*(f, IP'g)M 

= (f, (iwQ + u*IP)g)M, (9.42b) 

u := a*d - b*c = w exp(i</>), w = JuJ,</> = argu, 

iv := b*a - a*b, 

iw := c*d - d*c, 

i.e., v = 2 Im(b*a), 

I.e., w = 2 Im(c*d). 

(9.43a) 

(9.43b) 

(9.43c) 
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In (9.43b) we see that the restriction (9.19) implies that v > 0. Note that the 
unimodularity condition det M = I, Eq. (9.3a), implies 

w 2 + VW = 1. 

The extreme members of (9.42) thus read 

L vM(q, q*) d 2qq*f"(q*)g(q) 

(9.43d) 

= L vM(q, q*) d 2q/0(q*)(uq + v dfdq)g(q), (9.44a) 

l vM(q, q*) d 2q df0(q*)Jdq*g(q) 
<(,' 

= L vAI(q, q*) d 2qf"(q*)(wq- u* dfdq)g(q), (9.44b) 

where we have used the fact that f, g E £14M are analytic functions in order to 
writef(q)* = f"(q*),.f" being a function of q* only. 

Exercise 9.11. Show that for F = F(q, q*), 

BF:= L d 2qoFfoq* = ~J_"'"' d(Imq)F[q=-<X> + ~J:"' d(Req)FI:q=-"'· 

(9.45a) 

This is the boundary term for integration by parts for F(q, q*) = G(q, q*)· 
H(q, q*): 

(9.45b) 

Integrating (9.44) by parts by (9.45b), noting that o.f"(q*)foq = 0 = 
og(q)foq*, and assuming that the boundary term B.1• 9 in (9.45a) vanishes, 
we find as a sufficiency condition a pair of partial differential equations, 

q*vM(q, q*) = (uq- Vofoq)vM(q, q*), 

-ovM(q, q*)Joq* = (wq + u*ofoq)vM(q, q*), 

which will determine the weight function. 

(9.46a) 

(9.46b) 

This equation pair is of the same form as the pair which determined the 
transform kernel in (9.7). Its solution, with a proper choice of normalization, 
is a real function 

vM(q, q*) = {-rrv/2)- 112 exp[(uq 2 - 2qq* + u*q*2)/2v] 

= (1rvj2)- 112 exp{ -p2[1 - w cos(~+ 28)]/v}. (9.47) 

The last expression uses the polar representation of u in (9.43a) and q =: 
p exp(i8). We note that as long as v > 0, the weight function is well defined. 
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The limit v ____,. o+, Im(ajb) ____,. o+, which includes real matrices M, will be 

examined later in this section. 
The Parseval identity 

(f, g)r = L dqf(q)*g(q) = L vM(q, q*) d2qJM(q)*gM(q) = (fM, gM)M 

(9.48) 

will fix the normalization constant for the weight function (see Exercise 9.14). 

Having found the explicit form of the weight function, we can verify 

that the boundary term Bvr•g vanishes for functions with a finite inner 

product (9.48). Let JM(q) =: exp(uq2j2v)JBM(q). Upon substituting (9.47) 

into (9.48), we see that the '5'-integral of exp(-jqj 2/v)IJBM(q)j 2 must be 

finite. The partJBM(q) must therefore be of growth less than (2, -!-v). [Recall 

the definition of growth in (8.2).] As the integrand is a Gaussian of finite 

width, in all directions in the complex plane the boundary integral (9.45a) 

is zero. We can thus characterize !18M as the space of entire analytic functions 

on '5' which are exp(uq 2 j2v) times a function of growth less than (2, lj2v). 

Polynomials times exp(uq 2j2v), in particular, are seen to be elements of !18M. 

Exercise 9.12. To provide an example for ICM transforms, consider '¥0(q), 

the lowest harmonic oscillator wave function (7.156), namely, 

'¥o(q) := 7T-l/4 exp( -qz/2). (9.49a) 

Using (9.16) and the associated phase function, show its ICM transform to be 

'Y0 M(q) = exp( -hr/4)7T- 314(2b)- 112 exp(idq 2 j2b)!([(a + ib)/2b]li 2 , -q/b) 

=' [7T 112(a + ib)]-112<p([(a + ib)/2b]l 12) exp[ -q 2(d- ic)f2(a + ib)]. 

(9.49b) 

Follow this function for the various complex one-parameter subgroups of 

Section 9.1. Check that for the Fourier transform it yields the correct result. 

Exercise 9.13. Evaluate the integral, for real f3 > 0, 

J(a,f3,y, 8, e)= r d 2qexp(aq 2 - f3qq* + yq* 2 + 8q + eq*) 
.l'(f 

= 1r(f32 - 4ay) -li2 exp[(ae2 + y82 + f38e)j(f3 2 - 4ay)], (9.50a) 

absolutely convergent if and only if 

Ia + Yl < f3. (9.50b) 

This integral will be useful later on. The calculation is tedious but straight

forward: integrate over Re q and Im q using (9 .16) twice. The condition for 

absolute convergence for this equation, Eq. (9.16c), leads to larg(a + f3 + y)l < 1r, 

which means, f3 being real and positive, that Ia + Yl < {3. The two <p-factors are 

unity. 
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Exercise 9.14. Find the proper normalization constant for the weight func
tion by requiring ('f'0M, 'f'0M)M = 1. Use (9.49), (9.50), and the identity u/v -
(d- ic)f(a + ib) = (a* + ib*)fv(a + ib). 

9.2.3. Inversion 

Having found a Parseval relation, we can suggest an inversion formula 
for the complex eM transform which will then be proven. Although we have 
insisted on dealing with functions f E £!11 = 2 2(8?), it is not difficult to argue 
that our transforms work-as the Fourier transforms do-for Dirac o's and 
other generalized functions. If liP is the Dirac o sitting at q = p, its complex 
eM transform Will be, by placing the o(q - p) in (9.5), 

(9.51) 

If this generalized function appears together with a continuous f E £!11 in the 
Parseval identity (9.48), it tells us that 

f(q) = (Sq, f)1 = (SqM, fM)M = L vM(q', q'*) d 2q'jM(q')CM(q', q)* 

= (e; 1fM)(q), (9.52) 

thereby providing an inversion formula for complex canonical transforms. 
It will be observed that the inverse transform involves the complex conjugate 
of the direct transform kernel as for the real case (9.9), but the integral is 
now that of the f!IM inner product. 

Equation (9.52) can be found as a limiting formula if we place a kernel 
CM.(q', q)* with M' close to M, asking only for the convergence of the 
integrals, 

L vM(q', q'*) d 2q'JM(q')CM.(q', q)* 

=f., vM(q', q'*) d 2q' [L dq''j(q")CM(q', q")]C,vr(q', q)* 

= L dq''f(q")[L vM(q', q'*) d 2q'CM(q', q")CM.(q', q)* l· (9.53) 

The expression between brackets, we suspect, should be o(q - q") forM' = 
M. Saving the reader some algebra, we calculate 

L vM(q', q'*) d 2q'CM(q', q")CM.(q', q)* 

= (27T3vbb'*)- 112 exp[i(aq"2/2b- a'*q 2f2b'*)] 

x J(b*f2bv, Ifv, u*f2v- i d'*/2b'*, -iq"/b, iqfb'*) 

= CM"- 1M'(q", q) M'-+M o(q - q"), (9.54) 
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the primed parameters being the parameters of M', J( · · ·)being the integral 

(9.50), and the conclusion being due to (9.22). Equation (9.54) substituted 

into (9.53) reproduces (9.52). 

9.2.4. The Bargmann Transform and Space 

A particular case of complex linear canonical transforms-which will 

serve as the Fourier transform did for the real transforms-is Bargmann's 

transform, defined as C8 , where 

B = 2- 112 ( _: - ~), - i = exp(- hr/2). 

The transform kernel and weight function in 86'8 -space are 

Ca(q', q) = (21/27T)-l/2 exp( -q2/2 + 2112qq' _ q'2J2), 

v 8 (q', q'*) = (2/7T)112 exp( -lq'l 2), Ua = 0, V8 = 1. 

(9.55a) 

(9.55b) 

(9.55c) 

This essentially defines the transform introduced by Bargmann in his 1961 

paper. There, the inversion formula (9.52) is rigorously proven. The space 

888 of entire analytic functions-called Segal-Bargmann or Bargmann space 

thereafter-is shown to be a Hilbert space, and C8 is thereby established as a 

unitary operator. The Bargmann transform, as it appeared originally and is 

currently used in most of the literature, has normalization coefficients different 

from ours: The constant factor in the transform kernel (9.55b) is 7T- 114 in 

place of our (21127T)- 112, and in the weight function (9.55c) it is 7T- 1 instead 

of our (2/7T)1'2. We uphold our choice of constants by the argument that the 

normalization for all CM transforms provides the correct composition 

formulas and limits for arbitrary parameter values. 

9.2.5. Properties of the Harmonic Oscillator Wave Functions 

The important feature of the Bargmann transform is that, from (9.1) 

and (7 .160), 

Hence 

IC B;rt = QIC B. 

C8 Z = iiP'Ca. 

(9.56a) 

(9.56b) 

(9.57a) 

(C8 ;Ef)(q') := 2- 112(Ca(Q + iiP')f)(q') = (iiP'C8 f)(q') = djE(q')fdq'. 

(9.57b) 
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In other words, application of the harmonic oscillator raising operator 
zt onf(q) multiplies its Bargmann transformf8 (q') by q', while the lowering 
operator Z on f(q) transforms into dfdq' acting on f 8 (q'). Furthermore, 
under the PA8 inner product, z is the adjoint of dfdz and vice versa, as we 
can easily see: 

(Qf8 , g8 }B = cocBr, cBg)B = ccBztr, CBgh = cztr, g)l = cr, Zg)l 

= (CBf, CBZg)B = (CBf, iPCBg)B = (f8 , Vg8 }B. (9.58) 

As a consequence, the harmonic oscillator wave functions (Section 7.5) will 
have a particularly simple Bargmann transform. The oscillator ground state 
'¥0(q) can be seen to transform into the constant (2?T)- 114 [Eqs. (9.49) for the 
parameters of B in (9.55a)]. Since we generated the orthonormal set 
{'Yn(q)}:'=o as powers of zt acting on the ground state, we immediately 
deduce from (9.57a) that 

(9.59) 

As we are assured that the Bargmann transform is unitary and we know that 
{'Yn(q)}:'=o constitutes a complete and orthonormal basis for 2 2(Pl), it 
follows that the set of power functions (9.59) is a complete and orthonormal 
basis for Bargmann space. The mathematics of systems described in terms of 
harmonic oscillator wave functions is particularly streamlined in PA8 as 
these wave functions involve only power functions. Applying operators 
generally means applying multiplication and differentiation, plus some 
combinatorics. 

Exercise 9.15. Verify directly that the power functions (9.59) are an ortho
normal set in 818 • Calculate ('Fn8 , 'Fn8 ) 8 using the polar representation of the 
complex q'-plane: d 2q' = Jq'J dJq'J dargq'. The angular integral will provide 
the 8n,n··factor, and the radial integral is Euler's representation of the r-function 
(Appendix A). 

Exercise 9.16. Show that the harmonic oscillator Hamiltonian operator 
D-lJh = 2..0 0 in (9.34e) is represented in Bargmann space essentially as ..0 2 in (9.34a); 
i.e., IC8 ..D 01Ci 1 = i..D 2 • Accepting the hyperdifferential representation (7.197) as 
the Fourier transform IF = exp(i?T/4) exp(- i?T..Do), show that Fourier transforma
tion in Bargmann space appears as a dilatation by a factor i = exp(i?T/2) [as in 
(7.71) and (9.26)], namely, IC8 1FICi 1 = exp(i?T/4)[])1• Using (7.72), verify the self
reciprocity relation (7.167) of the harmonic oscillator wave functions. Note that, 
as matrices [Eqs. (9.26), (9.32), and (9.55a)], 

-1-(i 0) BFB - O -i . 
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9.2.6. Transform and Reproducing Kernels as Generating Functions 

The transform kernel Ca(q', q) has a rather transparent series expression 

as a generating function relating two orthonormal bases: 

00 00 

~ 'fnB(q')'Yn(q)* = (277)-1/4 ~ (n!)-112q'n'Yn(q) = (277)-li4Gi/1(2112q', q) 
n=O n=O 

= CB(q', q) = 2-1/477 -t/2 exp[ -q2!2 + 2112qq' _ q'2/2], 

(9.60) 

where we have used the harmonic oscillator generating function (7.178). 

Exercise 9.17. The Bargmann transform maps 2"2(~) functions onto func
tions with convergent Taylor expansions in '(]'. Relate the harmonic oscillator 
"partial waves" of a given function (7 .180) with the Taylor coefficients of its 
Bargmann transform. Equation (9.60) provides a very handy relation. 

Exercise 9.18. The representation of transform kernels as generating func
tions relating orthonormal bases can be applied to other cases; for example, the 
Fourier transform kernel [Eq. (9.32)] under the integral sign can be represented 
as 

"" 
(277)- 112 exp(ipq) = L in't'n(p)'Yn(q) = exp(i77/4)Cp(p, q). (9.61) 

n=O 

Exercise 9.19. Perform the Bargmann transform of (9.61) and show that 

"" 
(277)- 112 [1CB exp(ip· )](q') = L 'Yn(p)'Yn8 (iq') = CB(iq', p). (9.62) 

Notice that this holds in spite of the fact that the oscillating exponential function 
is "just" outside 2"2 (.131!). Correspondingly, the Bargmann transform kernel 
behaves as exp(q'2 /2), i.e., it is "just" outside !188 . The treatment of generalized 
functions has been developed in Bargmann's second paper (1967). 

Generating functions built out of pairs of orthonormal bases have a 

deep relation with transform kernels. This is suggested by (9.60) and (9.61). 

In 2'2(~) when a generating function has orthonormal basis functions in 

two different arguments, a Dirac 8 results as in Eq. (7.180d). In Bargmann 

space the orthonormal basis (9.59), for two different arguments, yields 

00 00 

KB(ql> q2) := L: 'Yn8 (ql)'Yn8 (q2)* = (277)- 112 L: (n!)- 1qlnqtn 
n=O n=O 

= (277)- 112 exp(qtqi). (9.63) 

This well-defined function is the reproducing kernel under the Bargmann 

inner product integral, since for any fB E !:EB, 

L v(q, q*) d 2qjB(q)KB(q', q) = JB(q'), (9.64) 

as its Taylor series converges. The role of the Dirac 8 in 2'2(~) is thus taken 

by KB in flJB. 
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Exercise 9.20. Prove that 

L v(q2, qn d2q2KB(q1> q2)KB(q2, qa) = KB(ql, qa) (9.65) 

is the analogue of the convolution relation between Dirac S's in Exercise 7.31. 

9.2.7. The Coherent-State Basis 

There are two generalized bases of the Dirac kind for !l'2(Bi) and E!48 
on which we would like to comment briefly. First, there is the Dirac basis 
which "expands" a function in terms of a continuum of Dirac S's sitting on 
points q' E Bi with continuous linear combination coefficients f(q') as 
suggested by Eq. (7.86). Correspondingly, Eq. (9.64) expands a function 
f 8 (q') in a continuum of functions K8 (q, q') for q E C(? with linear combination 
coefficientsf8 (q). This set is overcomplete in the sense that the functions are 
linearly independent but not orthogonal [Eq. (9.65)]. Second, we can point 
out that the inverse and direct Bargmann transforms are 

f(q) = (27T)ll4 L vs(q', q'*) d2q'JB(q')Yq.(q), 

fB(q') = (27T)ll4 r dqf(q)Yq{q'), 
•!Jt 

q E Bi, (9.66a) 

q' E 1f", (9.66b) 

where we have introduced the coherent states (7.188), which are, note, 
essentially the Bargmann transform kernel. Equation (9.66a) can be inter
preted as the expansion of a function in a complex continuum of coherent states. 
This basis is again overcomplete, although a strictly complete subset can be 
found [see Bargmann et a!. (1971)]. Conversely, Eq. (9.66b) expands a 
function f 8 E E!48 in a real continuum of the same states. Several other genera
lized bases, complete and orthonormal, can be found for Bargmann space, 
including, strangely enough, the repulsive oscillator wave-function basis, 
which happens to be self-reciprocal under C8 [see Wolf (l977a) and Exercise 
9.29]. 

9.2.8. The Gauss-Weierstrass Transform as a Complex Canonical 
Transform 

The main features of the Bargmann transform can be extended to all 
other permissible complex canonical transforms. We shall not burden the 
reader with generalities, however. We are interested, nevertheless, in two 
other important particular cases of Cu transforms, the Gauss-Weierstrass 
"diffusive" transform and the bilateral Laplace transform. 
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The Gauss-Weierstrass transform (for time t) arises for the matrix 
parameters 

W(t) = (~ -2it) 
I ' 

t > 0, - i = exp(- hr/2). (9.67) 

The general Cw<n kernel (9.8) then becomes the Gauss-Weierstrass kernel 
(8.90) which is the diffusion equation Green's function for time t. The appli
cations of canonical transforms to the study of the diffusion equation will 
occupy Section IO.l. The main points we want to emphasize here are the 
following: (a) The Cw<n transform provides us with the known results on 
analyticity of the heat equation's solution [see Widder (1975)]. (b) Diffusive 
time evolution has, as the energy in the wave equation, a sesquilinear invariant 
associated with a conserved inner product ( ·, · )w<n in !!Jw<o· Previously, only 
total heat, a linear invariant, was counted. (c) The problem of the backward 

time evolution takes a new aspect as a C;;;<F> operator acting on !!Jw<t>· [In this 
connection, recall the discussion of the Gauss-Weierstrass transform in 
Section 8.5 and its inversion. The problem has been tackled by Doetsch 
(1928, I936) and Tricomi (I936). More modern treatments can be found in 
the work of Bilodeau (I96I) and Rooney (1957, I958, I963). Its relevance in 
physics is connected with the quantum mechanics of unstable particles; see 
the articles by Horwitz et al. (1971) and Sinha (I972).] 

9.2.9. The Collapse of Bargmann to :t'2(8i)-Spaces, the Laplace Transform 

The bilateral Laplace transform kernel will now be seen to arise as the 
particular case of (9.8) for the parameter values 

L := (0 i) 
i 0 ' 

i = exp(i7r/2). (9.68) 

The problem with (9.68), however, is that when setting up a !!JL-space we are 
faced with an apparently singular weight function in (9.47), since for a = 0 the 
values of the parameters (9 .43) are u = - I, v = 0 = w. We shall examine in 
general the behavior of the real weight function vM(q, q*) as v-+ 0. Basically, 
we shall see that the integral over the complex plane in the inner product and 
the inversion formula becomes a J !R dq · · · in the complex plane along a ray 
depending in the phase of u. In the c~se when M becomes real, the integration 
contour becomes the real axis. To follow the expression for vM(q, q*) as 
v-+ o+ we use the polar form given by the last member of Eq. (9.47). From 
(9.43d) as v-+ o+' w = (I - vw)112 c::: I - vw/2, so that vM(q, q*) has its 
maximum along the line in the complex q-plane where cos(</> + 28) = I, i.e., 
for arg q = 8 = -</>/2 = -1- arg u and for 8 = -</>/2 + 71". This approxima
tion and a trigonometric identity allow us to write, for v-+ o+' 
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In the limit v--? o+ we can use a sequence of Gaussians of decreasing width 
which define the Dirac ll in (7.83), writing, as a weak limit, 

vM(q, q*) v--+0+ 2- 112 exp( -wp2j2)'8(2112p sin(8 + c/>/2)). (9.70) 

Since this appears under the double integral J: pdp J~,. dB, the point p = 0 
is immaterial insofar as the '8 is concerned and only the integration over 8 is 
reduced to the integrand's value at the roots of the sine function: 8 = - c/>/2 
and 8 = 7T - c/>/2, the former with a plus and the latter with a minus sign. If 
we define x := p exp( -ic/>/2) and -x := p exp[i(TT- c/>/2)], the limit of the 
inner product will be a line integral, 

lim r vM(q, q*) d 2qJM(q)*gM(q) = f exp( -wlxl 2/2) dxJM(x)*gM(X), 
v-o+ J'd' Ell 

~ (9.71) 

along (f.i~ := (fi exp(- ic/>/2), tilted by - t arg u with respect to the real axis. 
When the matrix M is real, u = I, c/> = 0, and w = 0; hence (fM, gM)M = 
(fM, gM)l> and the defining inner product for !!JM is that of !!J1 = .P2([Ji). 

We return now to the canonical transform CL determined by (9.68). The 
transform kernel (9.8) is - (2TT) - 112i exp( -qq '), which is the bilateral Laplace 
kernel (although unfortunately off by a factor and phase). The corresponding 
1!JL-space has an inner product (9.71) for w = 0, and, since u = -1, cf> = ±TT. 
The inner product therefore involves integration up along the imaginary axis. 
(See Exercise 9.21.) This agrees with (8.1). The inverse Laplace transform 
integrates, along this contour, the function in company with the complex 
conjugate kernel: (27T)- 112i exp(xq). As xis the value of q' for pure imaginary 
values, complex conjugation produces the correct inverse transform kernel. 

It should be noted that the Laplace transform has been correctly 
described in spite of the fact that L in (9 .68) does not satisfy the integrability 
conditions (9.19}---in fact, we know that the bilateral Laplace transform is 
not defined on all of .P2((f.i) but only on a dense subset: causal functions. We 
shall comment briefly on this below. 

Exercise 9.21. The Laplace transform matrix (9.68) has 11 = -1 [Eq. (9.43a)]. 
This could mean 11 = exp(inTT) for any odd integer n. Concentrate on n = ± 1. 
Show that the two cases give rise to the same integral: x = p exp( + i7T/2) along 
the ray at + iTT/2 minus x = p exp( ± iTT/2) along the ray at ± i1rj2. 

9.2.10. Further Extensions and References 

To sum up, we have shown that the class of complex linear transforms 
eM is a set of unitary transformations between 2'2(~) and Bargmann-Iike 
spaces !!JM, which properly include the Bargmann, Gauss-Weierstrass, 
Moshinsky-Quesne (real linear), and-somewhat improperly-bilateral 
Laplace transforms. 
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Certain further developments will be left for the interested reader to 
look up in the literature. The first one concerns the composition of complex 
linear canonical transforms, generalizing the real case discussed in Section 9.1 
and proceeding essentially from the composition property (9.54). Second, we 
can repeat our program in N dimensions, dealing with 2N-dimensional 
symplectic matrices lVI and defining integral transforms in N-space (Wolf, 
1974a). Third, there is the question of existence of transforms violating-as 

the Laplace transform-the integrability conditions (9.19). It turns out that 
the unitary canonical transforms constitute a subsemigroup of the group of 
2N x 2N symplectic matrices. [See Kramer and Schenzle (1973) and Brunet 
and Kramer (1976).] It also turns out apropos that many of the nuclear 
cluster model calculations need transforms which lie outside this subsemi
group. [See Zahn (1975), Seligman (1976), and Seligman and Zahn (1976a).] 
Fourth, N-dimensional transforms invite the consideration of complex 

radial transforms (Moshinsky et a!., 1972; Wolf, 1974b ), which include 
the Hankel transform and-corresponding to the Bargmann case-the 
Barut-Girardello transform [see Barut and Girardello (1971)]. [See also 
Kramer eta!. (1975, Section VI), where Girardello's name has been unjustly 
left out, and Seligman and Zahn (1976b).] The role of canonical transforma
tions in quantum mechanics has suggested several generalizations (Moshinsky, 
1973; Mello and Moshinsky, 1975). Finally, studies in group representations 
have been done with the aid of canonical transforms. [See Boyer and Wolf 
(1975, 1976) and Wolf (1977b).] 

9.3. Canonical Transforms by Hyperdifferential Operators 

We have a parametrized continuum of integral transforms, one for each 
complex 2 x 2 unimodular matrix. Since these matrices form a group, and 
integral transforms compose following matrix multiplication-up to a sign
we have at our disposal the powerful results of Lie theory to define and solve 
many questions. Our aim here does not require the full use of group theory 
language; rather, we shall phrase the subject of integral transforms in the 
following terms. 

9.3.1. Operators Generating Transforms 

Given a one-parameter integral transform family 

(CM(t)f)(q') = L dqf(q)CM(t)(q', q) =:f(q', T), (9.72) 

which includes the identity forT= 0 [i.e., M(O) = 1 andf(q, 0) = f(q)], we 
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want to find a differential operator IHI which we can write as a function of q 
and djdq such that 

00 

(CM<>lf)(q) = exp(iriHI)f(q) =: .L; (n!)- 1(iriHI)nf(q). (9.73) 
n=O 

Operators of this kind have appeared before mainly in connection with the 
time evolution of the wave and diffusion equations, translations, and dilata
tions. They involve arbitrarily high derivatives so their domain must be a 
subset of the '{/oo functions (although we have seen that weakly their action 
can be defined on larger function spaces). 

The operator !HI can be formally obtained from (9.73) by differentiating 
with respect to r and setting r = 0: 

1Hlf(q 1
) = -i :T L dqf(q)CM<•lq 1

, q)i,=o· (9.74) 

The operator IHI will be said to generate the integral transform family (9. 72). 
The theory of Lie groups assures us that once we have found the operator IHI 
by (9.74) its exponentiated (and properly defined) action is that of (9.72)
(9.73). 

The following one-parameter subgroups of the group SL(2, ~) are of 
particular interest: 

:r CM(q 1,q)l,=o = ~ CM(q 1,q)- exp(~)qlol(q- exp(~)q 1) La 
= l ac q - q 1 ) - q I }__ o( q - q 1 ) 

2 aq 

(9.75a) 

.1 02 c ( I ) I =-!2-<:;2 Mq,q ' 
uq •=0 

(9.75b) 
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oar cM(q~, q) l.=o = i ~ qi2CM(q~, q) l.=o = i ~ q23(q - ql) 

= i ~ q2CJ\tCq~, q) l.=o' 

( 
cosh r 

Mr(r) := . 
-smh r 

-sinh r) 
cosh r ' 

(9.75c) 

!._ CM(q 1
, q) I = r -21 coth T + i -21 (q 2 - 2qql cosh T + q 12)/sinh2 r] 

OT t=O l 
X Cp,lql, q)lt=O 

= i ~ (- 8~2 2 - q 2) C M( q I' q) L o' 

( cos r -sin r) 
Mh(r) := . , 

Sill T COS T 

:T CM(q 1, q) lt=O = r~ cot T - i ~ (q 2 - 2qql cosT + q 12)jsin2 r] 

X CM(ql, q)lt=O 

= i 2! ( - ~822 + q 2) Cw( q I' q) I . 
oq •=o 

(9.75d) 

(9.75e) 

We have used the labeling (9.26)-(9.28), (9.30), and (9.31) for the matrices 

and formulas (9.8) and (9.21) for the transform kernels. The final expression 

for each case is put in a form where integration by parts can be readily 

implemented so as to have the differential operators acting-with a minus 

sign-on the integrand functionf(q) in (9.74). The generating operators are 

thus found to be, respectively, 

IHJd := -!(IQIIP' + IP'IQI) = 2J2, 

IHJf := -!IP'2 = Jo + J 1' 

IHig := !02 = Jo - J1, 

w := t(IP'2 - 1(]2) = 2Jb 

IHJh := !(IP'2 + 1(]2) = 2Jo, 

(9.76a) 

(9.76b) 

(9.76c) 

(9.76d) 

(9.76e) 

where we have introduced the three J; operators from Eqs. (7.174) and 

(9.34). 
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Lie theory customarily works with the exponentiation of first-order 
differential operators such as IP [generating translations: Eq. (7.69)], Jl 2 

[generating dilatations: Eq. (7.71)], Q, or Q2 (multiplying the function by an 
exponential or Gaussian). Here we are exponentiating second-order differen
tial operators of which only IP 2 has been seen before [in Eqs. (7.74)-(7.75)]. 
When substituted into (9.73), Eqs. (9.76) lead to 

exp(i,BJJ2) = c(exp(~,B/2) exp~,B/2))' (9.77a) 

exp(ibiP2/2) = c(~ -b) 
I , (9.77b) 

exp(icQ 2/2) = ICC ~), (9.77c) 

( cosh(a/2) 
exp(iaJll) = IC -sinh( a/2) 

- sinh(a/2)) 
cosh(a/2) ' 

(9.77d) 

exp(iyJJ 0) = IC . 
(cos(y/2) 

sm(y/2) 
- sin(y/2)). 
cos(y/2) 

(9.77e) 

The matrix subindex of ICM has been written, for clarity, as IC(M). If we allow 
complex parameters in the SL(2, &?) matrices, we can denote the resulting 
group by SL(2, 'if): complex two-dimensional special (unimodular) linear 
transformations. We can now state that linear canonical transforms are 
generated by all operators constructed out of quadratic expressions in Q and IP. 
It is easy to see that (9.76) constitute bases for all second-order operators in 
Q and IP and, only slightly less easy, that the one-parameter subgroups 
generated by (9.76) exhaust, by multiplication, all of SL(2, :21). [See (9.29), 
(9.33), or the "Euler angle" decomposition involving (9. 77d) and (9.77e).] 
It does, however, require a good amount of mathematical finesse to fully 
condition and justify that the correspondence between hyperdifferential 
operators and integral transforms does hold over a continuous parameter 
range as suggested by our deceptively simple approach. Some of the aspects 
related to the domains of the hyperdifferential and integral forms of operators 
have been indicated at the end of Section 7.2. In dealing interchangeably 
with the two forms, we shall not encounter any major pitfalls and shall be 
able to simplify rather messy calculations to simple 2 x 2 matrix algebra. 
The results can always be verified by the more traditional methods. 

We now have three sets of mathematical objects at our disposal: (a) 
integral transforms IC(M), (b) hyperdifferential operators exp(iriHI), and 
(c) 2 x 2 matrices M. For every element in one there are corresponding 
elements in the other two, and this correspondence is preserved under 
composition, sum, and multiplication save for a possible sign in the com-
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position of integral transforms. As we shall see, the key element for many 

applications is that all b = 0 "integral" transforms do not involve integration 

at all but are purely geometric transformations such as (9.23). 

Exercise 9.22. Verify that the Fourier transform hyperdifferential form 
suggested in (7.197) holds as it belongs to the family (9.77e) for y = -77. Show 
that Pis the inversion operator (9.77a) times exp(i7T/2) and P = ~. 

Exercise 9.23. Verify that the square of the Bargmann transform is the 
inverse of the bilateral Laplace transform. 

Exercise 9.24. Let A and !HI be operators. Prove the following relation: 
00 en 

exp(BIHI)A exp(- BIHI) = L I [!HI, [!HI,··· [!HI, A]···]]. (9.78) 
n~on. ~ 

n 

This can be seen for the first few powers of 8 and then by induction on n. 

Exercise 9.25. Use Eq. (9.78) in order to verify that the exponentiated 
second-order operators (9.77) indeed transform ilJ and !P' as in (9.38). The sub
groups (9.77b) and (9.77c) lead to a terminating series. The series obtained from 
(9.77a) can be summed. The subgroups (9.77d) and (9.77e) require a recursion 
argument. 

9.3.2. Baker-Campbell-Hausdorff Formulas 

Consider the following matrix identity: 

( 
cosh e 
-sinh e 

-sinh B)' = (1 
cosh e 0 

- talnh e) (secoh e 0 ) (' 1 0) 
cosh e -tanh e 1 ' 

(9.79a) 

i.e., a decomposition along the lines of (9.29). Using the correspondence 

(9. 77) with hyperdifferential operators, we are led to 

exp[- iB!(d2 fdx 2 + x 2)] = exp(- i-!· tanh 8 d 2 fdx 2 ) 

x exp[-t ln cosh 8 (x djdx + djdx·x)] 

x exp(- it tanh Bx2). (9.79b) 

This is a Baker-Campbell-Hausdorff relation between hyperdifferential 

operators. [See, for instance, Wilcox (1967) and Eriksen (1968).] By substi

tuting the value 8 = i7T/4 into (9.79), this becomes the Bargmann transform 

matrix [Eqs. (9.55)], as cosh(i7T/4) = 2 -1!2 = - i sinh(i7T/4). This implies that, 

acting on a function, 

(C 8 f)(q) = exp[(7Tj8)(d2 jdq 2 + q 2)]f(q) 

= 2- 114 exp(t d 2 jdq 2)[exp(q 2 j4)f(2- 1' 2q)], (9.80) 
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i.e., reading from right to left, f(q) is multiplied by exp(q 2/2), unitarily 
rescaled by a factor 2- 112, and finally subjected to a unit Gauss-Weierstrass 
transform. This produces the Bargmann transform of the function. 

Exercise 9.26. Verify that the three operations in (9.80) transform the 
harmonic oscillator wave functions 'Yn(q) in (7.166) into power functions. In 
particular, you will use the inverse of (7.193) in the last step. Conversely, this 
equation can be proven by (9.80). 

Exercise 9.27. Use the decomposition (9.33)-the leftmost factor separated 
in two-to write another Baker-Campbell-Hausdorff formula for the first 
member of (9.79). 

Exercise 9.28. Use the result of Exercise 9.27 to express the Bargmann 
transform as (a) multiplication by a decreasing Gaussian of unit width, (b) 
Fourier transformation, (c) multiplication by another Gaussian, and (d) change 
of scale. 

Exercise 9.29. Find the Bargmann transform of the repulsive oscillator 
functions (7.203). You can either resort to a table of integrals or make use of the 
eigenfunction equation (7.198) together with the hyperditferential expression for 
C8 in (9.80). You have thus found a new generalized basis for Bargmann space. 
[See Wolf (1977a).] 

9.3.3. Time-Evolution Operators as Generating Canonical Transforms 

The hyperdifferential operator realization for canonical transforms will 
serve us now to bring out the relation between the transform kernels and the 
Green's functions for a set of quantum-mechanical systems. 

Consider partial differential equations of the form 

IHI,P(q, t) = - i :t ,P(q, t), (9.81) 

where IHI is a differential operator in q only. This is the diffusion equation 
when IHI is -2iiHI1 as defined in (9.76b). It is SchrOdinger's equation for the 
quantum free particle or the repulsive or the harmonic oscillator when IHI is 
IHJf, W, or IHJI', respectively [Eqs. (9.76b), (9.76d), or (9.76e)-thence the 
superscript labeling]. The solution to (9.81) at time t can be expressed in 
terms of the initial or boundary data at time t = 0: 

,P(q, t) = exp(itiHI),P(q, 0). (9.82a) 

This corresponds to a family of canonical transforms parametrized by t, 

.p(q, t) = (CM(t)~(.' O))(q) = L dq'.f(q', O)CM(t)(q, q'), (9.82b) 

where M(t) is the one-parameter matrix subgroup associated to the generator 
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0-11. The canonical transform CM<o is the time-evolution or Green's operator 
for the system governed by (9 .81 ). If the initial !f( q, 0) is a Dirac o sitting at 
q' [i.e., oq,(q) := o(q- q')], then clearly the solution to (9.82) is 

Gq.(q, t) := (CM(t)Sq•)(q) = CM(tiq, q'), (9.83) 

which is the Green's function for the system. 

Exercise 9.30. Verify independently that (9.83) is the Green's function of 
(9.81) for the five one-parameter subgroups M(t) which we have been handling, 
since (a) Eqs. (9.75) show that it is a solution to the differential equation, and (b) it 
is such that Gq·(q, 0) = o(q - q'). 

The economy of using matrices to represent canonical transforms is 
readily apparent when the initial conditions are themselves given as integral 
transforms. Consider the time development of a real Gaussian wave function, 
of width w centered at q' and normalized to unity, under a quantum harmonic 
oscillator potential, i.e., 

f(q, 0) = Gw(q- q') = l c(~ exp( -tj2)w)sq}q) 

= (27Tw)- 112 exp[ -(q- q')2J2w]. (9.84) 

The time evolution is given by the Mh(t) subgroup of transforms (9.75e)

(9.76e)-(9. 77e): 

!f(q, t) = lc(c~s t 
Sin t 

l c(c~s t 
Sin t 

= lc(c~s t 
Sin t 

-sin t)c(l 
cost 0 

-sin t - iw cos t) J 
. . 5q' (q). 

COSt- IW Sin t 
(9.85) 

The result is thus a CM function which can be written by substituting the 
entries of the last matrix into (9.8). No integration is needed. In Figs. 9.3, 9.4, 
and 9.5 is the time development of a Gaussian wave function under free, 
repulsive, and harmonic oscillator potentials. The diffusion equation Green's 
function is obtained from that of the free-particle Schrodinger case by the 
simple replacement t---+- 2it. 

Exercise 9.31. Note that the solution (9.85) is periodic with period 27T. This 
is to be expected, as, classically, the oscillation period of a harmonic oscillator is 
independent of its energy, and thus the wave function returns to its original shape 
after that time. At half that period, show that the wave function is inverted. At 
one-quarter the period, you have the inverse Fourier transform of the initial wave 
function. See Fig. 9.5. 
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~----r---+---~~--~---+--~--~~--+---+---~1 ~q ~ 

~ I ~ 

Fig. 9.3. Time development of a Gaussian wave function (of width 0.75, centered at the 
origin) under the free-particle Schriidinger equation. Real, imaginary, and 
absolute values are plotted in heavy dotted, light dotted, and continuous lines. 
The time intervals between two graphs are 7T/4. The small arrows indicate the 
(fixed) peak of the broadening, complex Gaussian. 

t> 

· ... · 

'-'- .. -·\~···. '•, .· :· .. c 
I~ .:'1 J \.•\ .0 t> 

Fig. 9.4. Time development of a Gaussian wave function (of width 0.75, centered at 
q = I) under the repulsive oscillator Schriidinger equation. Plot marks and 
parameters are as in Figure 9.3. The peak of the spreading Gaussian moves as 
a classical particle would under the same potential. 
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Fig. 9.5. Time development of a Gaussian wave function under the harmonic oscillator 
Schriidinger equation (9.85). Figure characteristics are as in Fig. 9.4. Here, the 
Gaussian peak performs the harmonic motion characteristic of coherent 
states. 

9.3.4. Quantum Normal Modes 

Wave functions generally lose their original shape under the influence 

of a quantum potential. One set of functions which do preserve their form, 

remindful of the normal modes of the elastic media, is the eigenfunctions of 

D-!1. If 'F"(q) is an eigenfunction of D-!1 with eigenvalue A., then for M(t) 

generated by IHI, 

'l\(q, t) := { dq''F"(q')CM<n(q, q') = exp(itiHI)'F"(q) = exp(it,\}'P\(q), 
Jih? 

(9.86) 

i.e., it is self-reproducing under all CM<t) and a separated function of q and t. 

Detailing: as the operators which we are interested in are IHJf, IHJr, and IHI", for 

the purposes of notational uniformity we shall denote their eigenfunctions by 
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'Y~.a(q), w = J, r, h, with an extra label a to resolve degeneracy when neces
sary. These are 

IHJf: 'f(a(q) = (21r)-112 exp[ia(2,\)l12q], 

AEfJ?+, a=±, 

D-11': 'fl.,a(q) = X11"(q), 

.:\ E !?d, a = ± [Eqs. (7.203)], 

IHJh: 'fl\h(q) = 'fn(q), 

(9.87a) 

(9.87b) 

.:\ = n + 1/2, n = 0, I, 2, ... [Eq. (7.166)]. (9.87c) 

Ordinary or Dirac orthonormality and completeness hold for these functions. 
Hence, multiplying (9.86) by '¥11(q")* and summing or integrating, as the case 
may be, over the label set(.:\, a), from the second and last members we obtain 

CM"'m(q, q") = S exp(it.:\)'f~ a(q)'Y~ a(q")*, ' . . A,O" 

(9.88) 

where the symbol S is meant to stand appropriately for integration or sum in 
each case. It becomes 

"~± {"' (2.:\)- 1 ' 2 d.\ (/case), "~± L: d.\ (r case), 

"' L (h case). 
n=O 

ll=n+l/2 

Equation (9.88) reduces, in the harmonic oscillator case, to (7.180d) for 
t = 0 and (9.61) fort = 1rj2. For the free-particle case, t = 0 reproduces the 
known integral representation of the Dirac o [Eq. (7.93) for n = 0], and 
similarly for the repulsive oscillator case. The transform kernel is shown by 
(9.88) to generalize the above completeness relations. 

Exercise 9.32. Show that the general eM transforms of the harmonic oscilla
tor wave functions are 

[(2 a+ ~b)nn!1Tlf2(a + ib)]-1/2 exp(- d- ~c~) 
a-~ a+~2 

X Hn((a2 + b2)-112q). (9.89) 

Verify the result for Fourier and Bargmann transforms. In the latter case, as 
a2 + b2 = 0, it turns out that only the polynomial leading term (of coefficient 2n) 
survives. Show that (9.89) is defined for almost all complex M. Equation (9.89) 
can be proven (a) by straightforward integration, (b) by (9.49) and the appro
priate raising operators, or, best, (c) by decomposing Mas M•MdMh [Eqs. (9.75c), 
(9.75a), and (9.75e)] and noting that under the rightmost factor '¥n(q) is only 
multiplied by a phase. 
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9.3.5. Coherent States and Their Time Evolution 

Another set of states which preserve their shape while under the action 
of a quantum potential is termed coherent states and is particularly important 
for the harmonic oscillator case. Coherent states Yc(q) were defined in (7.188) 
either as the result of acting with the exponentiated oscillator raising operator 
on the ground state 'Y 0h(q) or as eigenfunctions of the oscillator lowering 
operator. They are essentially displaced Gaussian of unit width and centered 
at 21' 2c, which reappeared briefly in (9.66), where we noted that they happen 
to be basically Bargmann's transform kernel (9.55b). They are 

Yc(q) = 7T- 1 i4 exp(c2j2) exp[- (q- 2112c)2/2] = (27T)- 1' 4 C8 (q, c) 

[ ( 
2-1/2 

= (27T) -1/4 c 
-i2-1/2 

i2 -1/2) ] 
2-1/2 sc (q). (9.90) 

The time evolution of the coherent states (9.90) under the harmonic 
oscillator potential is thus 

[ ( cost 
Yc(q, t) = (27T)- 114 C . 

Sill t 
-sin t) ( 2- 112 

cost c -i2- 1 ' 2 

[ ( 
2-1/2 

= (27T) -1/4 c 
- i2 -1/2 

= exp(itj2)Yc'<tlq), c'(t) := c exp(it). (9.91) 

The key step has been to write the matrix product Mh(t)B as BMd(- it). The 
last matrix denotes a dilatation canonical transform (9.26) which changes 
o(q - c) into exp(itj2)8(q - eitc). The subsequent C8 transform completes 
the result. The absolute value of Yc'(t)(q) is thus a Gaussian of unit width 
with an oscillating center at 2112c cos t representing the motion of a classical 
point particle moving with harmonic motion under an oscillator potential. 
As we saw in Section 7.6, coherent states exhibit the minimum dispersion 
product compatible with Heisenberg's uncertainty relation. Coherent states 
thus qualify as the closest quantum analogue of classical point particles under 
a harmonic oscillator potential. 

Coherent states for Hamiltonians IHl other than the harmonic oscillator 
are of some interest. Our procedure in Eq. (9.91) suggests their definition and 
calculation. Let IHl generate the time-evolution operator CM<t» and let A 
diagonalize the matrix subgroup M(t); then, as M(t)A = AMd(f(t)), f(t) 
being some function of t, Yc(q) := (CASc)(q) qualifies as a generalized 
coherent state for IHI. Its time evolution will be given, following (9.91), by 
'P Yc'<o(q ), where c'(t) = cf(t) is the "classical" motion of the wave packet 
and 'P = [f(t)F 12 • 
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Exercise 9.33. Implement this definition and calculation for the repulsive 
oscillator (9.76d)-(9.77d). Show that the diagonalizing matrix A is given by 
(9.35) and that f(t) = exp t, which is the classical motion of a particle pushed 
away by a repulsive oscillator. Unfortunately these repulsive coherent states are 
oscillating Gaussians, and their absolute values do not peak. The free-particle 
Hamiltonian generates a triangular-matrix time-evolution operator. This is not 
diagonalizable, and hence this potential does not possess coherent states. 

The coherent-state construction can be carried further for potentials 
involving "centrifugal" barriers ( -q - 2). Thus Barut and Girardello (1971) 
built eigenfunctions of the second-order lowering operator J _, the analogue 
of (7 .l74c) in more than one dimension. This can also be obtained by a hyper
differential operator calculus involving iQ - 2 (Wolf, 1974b). Not surprisingly, 
the Barut-Girardello coherent states are the precise analogues of (9.90). 
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Applications to the Study of 
Differential Equations 

Canonical transforms, besides generalizing the Fourier and Bargmann 
integral transforms, provide a fine tool for the analysis of a class of differen
tial equations. The class consists of up-to-second-order differential operators 
of parabolic type. These include the diffusion, the Schrodinger free-particle, 
the linear potential (free-fall), and the attractive and repulsive oscillator 
equations. It also includes a few others such as the Fokker~Pianck equation. 
Although this class is far from universal, the ease with which solutions and 
properties are found makes canonical transforms an attractive tool for 
problems such as these. In Section 10.1 we start with the introduction of 
inhomogeneous linear canonical transformations and apply the machinery to 
a deeper study of the diffusion equation: how to find families of solutions out 
of a known solution (the action of the similarity group of the equation) and 
the question of separating coordinates, which brings us to generalized normal 
modes. In Section 10.2 the analysis is applied to a general member of the 
differential equation class. We show that all computations reduce to, essen

tially, 2 x 2 matrix algebra. This is in the true spirit of group theory. 

10.1. The Diffusion Equation: Similarity Group and Separating 
Coordinates 

We shall consider here the set of all up-to-second-order operators in Q 

and IP', 

1HJ = AIP' 2 + B(QIP' + IP'Q) + C0 2 + DQ + EIP' + H, 
A, B, ... , FE '6', (10.1) 

417 
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and shall introduce inhomogeneous canonical transforms, i.e., the group of 
canonical transforms of Chapter 9 plus translations and multiplications by 
c exp(aq ). Operators (I 0.1) appear in a class of parabolic differential equations 

IJ--Of(q, t) = -i :tf(q, t), (10.2) 

for which we can find "normal modes" and separating variables. We shall 
show that the mathematical techniques we have developed reduce all the 
needed computations to essentially 2 x 2 matrix algebra. In this section we 
shall apply all developments to the diffusion equation, where 11--0 in (10.1) is 
simply -i EPjoq 2 = i1P' 2. The slight complication of having complex param
eters will be more than offset by the readily interpretable results. Section 
10.2 will show how the general case is to be handled. 

10.1.1. Heisenberg-Weyl Transformations 

The added generality of (10.1)-(10.2) over the corresponding equations 
we considered in Chapter 9 [Eqs. (9.76) and (9.81)] consists of allowing for 
terms linear in lCD, IP', and ~. To implement the ideas of Chapter 9 for this 
enlarged set, we must examine their exponentiated action on functions and 
operators. Most of this has been done in Chapter 7, where we saw that IP' 
generates translations of the space [Eqs. (7.27) and (7.69)], lCD generates 
multiplication of the function by an exponential [Eq. (7.70)], and H, quite 
simply, multiplies the function by a constant. From these we can define the 
W transform operators 

W(x, y, z) := exp[i(x!CD +yiP' + z~)] 
= exp[i(z + xy/2)] exp(ix!CD) exp(iyiP') 

= exp[i(z- xyj2)] exp(iyiP) exp(ix!CD), X, y, Z E f?ll. (10.3a) 

The equality between the last two expressions can be proven by applying the 
operators to any analytic functionf(q), obtaining in both cases 

(W(x, y, z)f)(q) = exp[i(xq + xyj2 + z)]f(q + y) (10.3b) 

[recall the Weyl commutation relation (7.33)]. The equality with the first 
form of W takes slightly longer to verify (see Exercise 10.1). Moreover, the 
set of all operators (10.3) for x, y, z E fJJt gives rise to a group of transforma
tions, which we shall denote by W. (a) The composition of two elements of the 
set (10.3) is a new operator which is again a member of the set. Indeed, 

W(x2, y2, z2)W(xl> YI> z1) 

= W(x2 + X1, Yz + YI> z2 + Z1 + (Yzxl - X2Yr)/2), (10.4) 
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as can easily be verified by acting with both members on any f(q) and using 
(10.3b). Equation (10.4) shows that the product of two W transforms is a 
W transform. (b) Associativity obviously holds. (c) The identity of the group 
is W(O, 0, 0) = ~- (d) [W(x, y, z)]- 1 = W( -x, -y, -z), as can be verified 
from (10.4). 

Exercise 10.1. Show that the first equality in (10.3a) holds. This can be seen 
if we develop both members in series and compare coefficients of like powers of 
x, y, and z inductively. 

A simpler proof is obtained if you use (9.38) in order to write the identity 

forM= ( Y ~ 1) -x Y 
ICM exp(ii?)ICM-1 = exp[i(xQ + yi?)] (10.5) 

and then use (9.23), (7.27), and (7.69). The action of (10.5) on any f(q) is given by 
(10.3b) for z = 0. [The parameter z is rather trivial to extract from the Baker
Campbell-Hausdorff relation in (10.3a) as~ commutes with Q and 1?.] 

Exercise 10.2. Show that for x, y, and z real the set of W transforms is a 
group of unitary mappings of 2'2(~) onto itself. Further description of the 
Heisenberg-Weyl group (10.3b) can be found in Wolf and Garcia (1972) [see also 
Wolf (1975)]. 

10.1.2. Inhomogeneous Linear Transformations 

The action of the elements of the Heisenberg-Weyl group Won operators 
can be as-certained to be 

W(DO. + EP)W- 1 = DWO.W- 1 + EWPW- 1 

= D(O. + y~) + E(P - x~) 

=DO.+ EP + (Dy- Ex)~. (10.6) 

The proof can rely on letting the members act on CC"' functionsf(q) as with 
(10.3b) or can use only the linear operators 0. and P and their properties: 
(a) linearity; (b) the commutator of 0. and Pis i1 [Eq. (7.59b)]; (c) the set of 
operators ~ := {DO. + EP + H; D, E, FE CC} closes on itself under 
commutation (hence forms a Lie algebra) and when exponentiated, gen
erates the group W; (d) the formula (9.78). The group of transformations 
(10.3) thus acts on the set ~ as if it were a three-dimensional space with 
Cartesian coordinates D, E, F, although, note, the parameter z in (10.3) does 
not appear in (10.6). This three-dimensional space of operators ~ is thus 
acted upon by Win addition to being acted upon by the group SL(2, &l) of 
linear canonical transforms which occupied Chapter 9 [Eqs. (9.1)]. The two 
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groups can then be composed [as a semidirect product of SL(2, f!l) and W] 
and the elements of the product denoted by 

O{M,l;,z}=O{(; ~),(x,y,z)}:=c{: ~)·W(x,y,z), (10.7a) 

M = e ~), ad- be= 1, !; := (x, y). (10.7b) 

The set I of transformations (10.7) also forms a group. (a) The product of 
two of its elements is again an element of the set: 

O{M2, 1;2, z2} · O{Ml> 1;1, z1} = C(M2)W(l;2, z2)C(M1)W(l;1, z1) 

= C(M2)C(M1)C(M1 1)W(l;2, z2)C(M1 1)- 1W(l;l> z1) 

= C(M2M1)W(l;2M1, z2)W(l;1, z1) 

= O{M2M1, l;2M1 + 1;1> Z2 + z1 + -!!;2M1Ql;l T}, 

(0 -1) 
Q := 1 0 . (10.8) 

The statement is proven in the next to last member. The last equality is again 
the definition (10.7) written so as to bring out the fact that the product of 
elements of W in (1 0.4) can be abbreviated using vector notation: !; as in 
(10.7b) and i;T as the column vector transpose to !;. (b) Associativity holds 
for I as it does for its constituents. (c) The unit element for the set is 0{1, 0, 0}. 
(d) The inverse of any operator (10.7) is O{M, !;, z}- 1 = O{M-I, -;M-1, -z}, 
as can easily be verified from (10.8). We shall call /the group of inhomogeneous 
linear transformations. 

It can be verified that the subset of I consisting of the SL(2, f!l) operators 
O{M, 0, 0} forms a proper subgroup SL(2, 9i) c /, as does the subset 
0{1, x, y, z}, which gives W c l. An important one-parameter subgroup 
which is not totally contained in SL(2, 9i) or in W is the following set of 
operators: 

(10.9) 

where the equality still has to be proven. 

Exercise 10.3. Show that the elements of I of the form (10.9) do constitute 
a one-parameter subgroup. If T1 and T2 are the values of the parameters, their 
composition will be of the same form with T1 + T2. Try disentangling the operator 
exponential in (10.9) into two such operators following (10.7). 
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Applying the left-hand side of (10.9) on a function f(q) [as prescribed 
by (10.7), (l0.3b), and the canonical transform (9.5)-(9.8), with - r = 
exp( -i-rr)r], we find it is an integral transform with a kernel 

Cz(q, q') := exp(3i-rr/4)(27Tr)- 112 exp{ -i[(q- q')2/2r- (q + q')r/2- r 3/24]}. 
(10.10) 

An argument parallel to (9.75) now shows that the one-parameter set (10.9) 
is indeed generated by the operator IHJ• := !IP>2 + Q. It is the linear potential 
(free-fall) Schrodinger Hamiltonian, and Eq. (10.10) is the system's Green's 
function. The eigenfunctions of this operator and its spectrum have been 
studied in (8.87)-(8.89). Figure 10.1 is a plot of the time evolution of 
Gaussian initial conditions under the equation (10.2) with IHJl and various 
values of r, in analogy to the evolution under IHI1, IHir, and IHJh (Figs. 9.3-9.5) 
with a similar physical interpretation. This quartet of operators IHiw, w = 
f, r, h, !, will be quite useful in what follows. In Section 10.2 we shall show 
that these four are, in fact, all the operators we need to consider in connection 
with the second-order parabolic differential equations (10.1)-(10.2). 

10.1.3. Diffusion and Transformation of Initial Conditions 

We have assembled most of the mathematical tools we need in order to 
present the main application in this chapter. The remaining pieces will be 

~--~-----~~-----1---r--~----~--~· ~q ~ 

~ ' <:·,< .......... · ··... ' ·~ 

•I> 

::;'.· t •. 1 ,~~~----l--3 
' ..... ): .. ·· \ .... _:~' .... ··· 

•I> 

Fig. 10.1. Time development of a Gaussian wave function under the free-fall Schrodinger 
equation [drawn in the same manner as Figs. 9.3-9.5, following Eq. (9.85) 
for the evolution operator (10.9)]. The peak of the Gaussian "falls" as a 
classical particle would. 



www.manaraa.com

422 Part IV · Canonical Transforms [Sec. 10.1 

developed and put in place as we proceed to apply our enlarged set of trans
forms to answer the following question: Letf(q) be, say, the initial tempera
ture distribution of a thin rod which diffuses in time asf(q, t) subject to 

a2 a 
oq2f(q, t) = a/(q, t), f(q, 0) =:f(q). (10.11) 

What will be the time development of an /-transformed initial condition 
(O{g}f)(q), where g = {M, !;, z} E I? The answer turns out to be remarkably 
simple. As the time development under the diffusion equation is a Gauss
Weierstrass transform (9.67), it follows from (9.81)-(9.82) that 

f(q, t) = ro{ (~ -2it) } l 
1 , (0, 0, 0) fJ(q) =: (OH<0f)(q). (10.12) 

The O{g }-transformed initial conditions thus give rise to the following 
temperature distribution: 

j"g(q, t) := [OHctlO{g}f](q) 

ro{(~ -2:t),co,o,o)}o{(: !),(x,y,z)}rjcq) 
ro{ (a -c2ict b - 2idt) } ., 

d ,(x,y,z) fJ(q) 

= ro{ (a -c 2ict (a _ ~ict) _1), (x, y + 2it9 x, z)} 
- 2it ) } l 1g ,(0,0,0) fl(q). (10.13) 

We have used the fact that both the time-development operator OHco and the 
applied transformation O{g} are elements of the same transformation group 
I. This allowed us to compose the two by (10.8) and decompose the product 
in such a way that the time-development operator DH<tgl acts first but with a 
transformed time variable: 

t9 = (dt + ib/2)/(a - 2ict). (10.14) 

This expression follows from ordinary matrix algebra on the two group 
elements in the last member according to (10.8). Now OHct.> acting on f(q) 
will produce a function f(q, t9 ) that is identical to (10.11) except for having 
t9 in place oft. The left-most factor in the last member of (10.13) is a special 
kind of /transform: as the 1-2 element is zero, it is not an integral transform 
at all but, from (10.3b) and (9.23), only a geometric transform: 

ro{(: ~-l),(x,y,z)}rlcq) = a- 112 exp[i(cq 2f2a + xqja + xy/2 + z)] 

x f(qfa + y). (10.15) 
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The geometric transform of a function, we see, involves displacement and 
change of scale of the argument and multiplication of the function by a 
Gaussian, an exponential, and a constant factor. Due to the fact that UH<t> 

in (10.12) involves an imaginary entry, complex numbers have appeared in 
(10.13) and (10.14). As the temperature is supposed to be a real function of 
real space q and time t, we can redefine for convenience the following group 
parameters: 

f3 == ib/2, y := -2ic, g:=-2ix, ~ = -iz. (10.16) 

Writing the entries in (10.13) and (10.14) in terms of these and using the 
result (I 0.15), we find that (D{g }f)( q) has developed under diffusion as 

(10.17a) 

where space q and time t have been transformed to 

q9 = [q- g({3 + dt)]f(a + yt) + y = qf(a + yt)- gt9 + y, (10.17b) 

t9 = ([3 + dt)f(a + yt), (10.17c) 

and the function f has been factored by a multiplier function p.9 with the 
structure 

p.g(q, t) = Cg{a + yt)- 112 exp[S(q, t)], 

C9 := exp[- (gyj4 + OJ, 

S(q, t) = [ -yq 2 - 2gq + e(f3 + dt)]/4(a + yt). 

Exercise 10.4. Verify these results in all detail. 

(10.17d) 

(10.17e) 

(10.17f) 

10.1.4. Manifest and "Hidden" Symmetries of the Diffusion Equation 

Our construction guarantees that if f(q, t) is a solution to the heat 
equation, then f 9(q, t) will also be for all values of the six free parameters 
a, [3, y, g, y, and ~. The physical meaning of each of these parameters will be 
brought out now by considering the one-parameter groups. 

(a) g = {1, 0, m: multiplication by a constant factor. 

j'g(q, t) = exp(- Of(q, t). (10.18) 

As the heat equation is linear, if f(q, t) is a solution, any multiple of this 
function will be a solution as well. 

(b) g = {1, (0, y), 0}: space translation [Fig. 10.2(A)]. 

j'g(q, t) = f(q + y, t). (10.19) 
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e q 

G H 

Fig. 10.2. Space and time transformation under various one-parameter subgroups of I, 
the similarity group of the diffusion equation. On opposite page: (A) space 
translation, (B) time translation, (C) scale change, (D) Galilean transformation, 
(E) projective transformation, (F) "linear" transformation. Above: (G) 
elliptic subgroup, (H) hyperbolic subgroup. Arrowheads are placed at equal 
intervals of the relevant parameters y, {J, a, .... 

The heat equation (10.11) involves only derivatives with respect to q, thus 
describing a homogeneous medium: one where the medium properties are 
invariant under translation. 

(c) g = { (~ - 2i~), 0, 0 }: time translation [Fig. 10.2(B)], 

fg(q, t) = f(q, t + [3) (10.20) 

is due to the invariance of (10.11) under time translations. [Actually, we 
must restrict f3 ): 0, as we shall see below.] 

(d) g = { (~ ~- 1), 0, 0 }: scale change [Fig. 10.2(C)], 

fg(q, t) = a-li2J(q/a, tfa2), (10.21) 

which states basically that a change of space scale by a must be accompanied 
by a corresponding change of time scale by a2 • 

The four transformations (10.18)-(10.21) have their ongm in corre
sponding symmetries of the heat equation (10.11) which are "inspectionally" 
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obvious. Our general development, however, points out two more transforma
tion symmetries of the diffusion equation. 

(e) g = {1, (ig(2, 0), 0}: Galilean transformatiOfiS [Fig. 10.2(D)]. 

/g(q, t) = exp[- g(q - gt)/2 - et/4Jf(q - gr, t). (10.22) 

This transformation is called "Galilean" as it relates the temperature 
distribution in a fixed rod f(q, t) to that of a rod moving with velocity g. 
For /g to be a solution, f needs to be corrected by a multiplier function 
(10.17a)-(10.17d)-(10.17f). Figure 10.2(D) only shows the space-time 
transformation. 

(f) g = { cy~2 ~), 0, 0 }: projective transformations [Fig. 10.2(E)]. 

J;;(q, t) = (1 + yt)- 112 exp[ -yq2/4(l + yt)Jf(qf(l + yt), t/(l + yt)). 
(10.23) 

These transformations deform the (q, t)-space in such a way that the qft
constant lines are mapped onto themselves [see Fig. 10.2(E)]. 

The set of all transformations (10.17)-(10.23) constitutes the similarity 
group of the heat equation (10.11). This group, we have seen, is the inhomo
geneous, real linear transform group I. Four one-parameter groups are 
"inspectional" and two are "hidden." Equations (10.17) include all of the 
transformations at once, so other one-parameter groups can be analyzed. 

(g) g = { (~ - 2:a), (2ia, 2a2, 2ia3/3)} from Eq. (10.9), linear subgroup 

[Fig. 10.2(F)]. 

}"g(q, t) = exp( -2qa + 4ta2 + 4a3/3)f(q- 4ta- 2a2 , t +a). (10.24) 

(h) g = {M(2i8), 0, 0}, M(2i8) from Eq. (9.31), elliptic subgroup [Fig. 
10.2(G)]. The transformations of space-time are 

q9 = qf(cosh 8 + 2t sinh 8), 

t9 = (t cosh 8 + t sinh 8)/(cosh 8 + 2t sinh 8). 
(10.25) 

(i) g = {M(2irp), 0, 0}, M(2irp) from Eq. (9.30), hyperbolic subgroup 
[Fig. 10.2(H)]. The space-time transformations are 

q9 = qf(cos .P - 2t sin rp), 

t9 = (t cos rp + ! sin rp)f(cos rp - 2t sin rp). 
(10.26) 
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b 

c 

Fig. 10.3. The action of various similarity 
transformations on a solution of the 
diffusion equation. (a) A "normal 
mode" subject to (b) Galilean and 
(c) projective transformation. The 
original function changes due to its 
product with a multiplier and the 
transformation of space and time 
arguments. Regions where the plot
ted function is positive are drawn 
with a closer grid. Note that the 
zeros of the function move along 
q = constant lines in (a), on q- tt = 
constant lines in (b), and on 
q/(1 + yt) = constant lines in (c). 

In the last two cases the appropriate multiplier function can be found from 
Eqs. (10.17). 

The multiplier action of I is a deformation both of space-time and of 
the solution function. We show this in Fig. 10.3. We present one particular 
(separable) solution in Fig. 10.3(a). After acting on thisf(q, t) with a Galilean 
transformation, we obtain Fig. 10.3(b). A projective transformation gives the 

solution shown in Fig. 10.3(c). 

Exercise 10.5. Verify that the set of geometric transforms (1 0.15) is a five
parameter subgroup of I. What is its effect on the t = 0 line? 

Exercise 10.6. Verify that (a)-(i) are indeed subgroups of I, in particular, 
check in the cases of Galilean, projective, and "linear" transformations that under 
the product of two transformations the coordinates and multipliers compose 
properly. Note that for a two-variable-functionf(q, t) solution of (10.11), all of 
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I is what we could call a geometric transformation group in analogy with (10.15). 
Find its generators as two-variable first-order differential operators. [See Miller 
(1977, Section 2.2).] 

Exercise 10.7. Verify, especially for Galilean, projective, and linear trans
formations, thatfg(q, t) is a solution to the diffusion equation (10.11) if/(q, t) is. 

Exercise 10.8. Show that, as suggested by Fig. 10.2, the following, considered 
as sets, are the invariant contours under each subgroup: (a) points (q, t); (b) lines 
t = constant; (c) lines q = constant; (d) convertical parabolas; (e) lines t = 
constant; (f) concurrent lines; (g) parallel parabolas; (h) concurrent, concentric 
ellipses and hyperbolas; (i) concentric, nested hyperbolas. Note that all intercepts 
with the t = 0 axis have zero slope in cases (g)-(i). 

Exercise 10.9. Not all solutions of the diffusion equation can be meaning
fully regressed in time. (Recall Exercise 5.3 and the discussion of the inversion 
of the Gauss-Weierstrass transform in Section 9.2.) We should thus demand that 
all time translations (10.20) be nonnegative ({3 ;;;, 0), so that the t = 0 line remains 
uncrossed when space-time transformations are applied. Show that consistency 
then requires that scale and conformal transformations also be nonnegative 
(a > 0 andy ;;;, 0) in (10.21) and (10.23). This defines a subsemigroup of/. The 
projective and elliptic transformations, in any case, are not globally continuous. 
As long as we remain in the vicinity of the t = 0 line and use small transformation 
parameters, however, these features will not bother us. 

The solution of differential equations with boundary conditions was the 
motivation for Sophus Lie to develop his work on continuous groups at the 
end of the last century. More recently Ovsjannikov (1962) and Bluman and 
Cole (1974) have updated Lie's work and spurred renewed interest in similarity 
methods. The fact that our I is the similarity group of the diffusion equation 
was rediscovered by Bluman and Cole (1969) and applied to a variety of 
boundary conditions [see, for instance, Bluman (1974)]. Another approach 
to the problem has been to determine all coordinate systems where the 
diffusion equation (IO.II) separates into two ordinary differential equations. 
This has been the theme for a series of papers by Miller, Kalnins, and Boyer. 
The diffusion equation is specifically analyzed in the article by Kalnins and 
Miller (1974). A very thorough account of the method and a complete refer
ence list can be found in the recent book by Miller (1977). Canonical trans
forms, as presented here (Wolf, I976), allow us to analyze some of these 
problems for the parabolic differential equations (I O.I )-(I 0.2), reducing them, 
as we have seen in the sample development (IO.l3)-(IO.I7), to 2 x 2 matrix 
algebra. 

10.1.5. Similarity Solutions, Separation of Variables, and R-Separability 

We shall now tackle the probiem of separation of variables for the 
diffusion equation. The completeness of the solution and its extension to 
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other parabolic equations will be shown in Section 10.2. Here we shall suggest 

the connection between separation of variables and the similarity solutions 

of the diffusion equation, that is, those solutions which at time t = 0 are the 

eigenfunctions of differential operators (10.1). 
Consider the time development of the oscillating eigenfunctions 'FL(q) 

of W [Eqs. (9.76b) and (9.87a)] under diffusion: 

'¥~:~(q, t) := OH<o'I'(a)(q) = [ c(~ -2:t)'Fta](q) 

= exp[i(2it)W]'¥(a(q) = exp( -2.\t)o/(a(q). (10.27) 

The key has been the self-reproducing property (9.86) of the eigenfunctions 

'¥L(q) under canonical transforms generated by its operator IHJf. See Fig. 

10.3(a). Simple as it seems, (1 0.27) contains the interesting information that 

't}~(q, t) is a separable function oft and q. In these coordinates the diffusion 

equation manifestly separates, i.e., if we assume the solution has the structure 

T(t)Q(q) and place this form in (10.11), we obtain two ordinary differential 

equations for the factors linked by a separation constant which we relate to.\. 

The solutions for Q,.{q) and T)\(t) yield precisely (10.27). Somewhat redun

dantly, note that under time translations (10.20), Fig. 10.2(B) draws out the 

q = constant lines which serve as part of the grid of this coordinate system; 

vertical t = constant lines are not drawn but can easily be added. 

Exercise 10.10. Show that the diffusion equation (10.11) has separable 
solutions in the coordinates q' = q - gt, t' = t. Verify that the solutions thus 
obtained by the usual separation of variables method agree. What about (10.23), 
(10.24), (10.25), and (10.26)? The answer, R-separation, is analyzed below. 

Now consider the nontrivial problem of exploring the diffusive time 

development of an initial temperature distribution of the shape of an Airy 

function (Fig. B.3). More precisely, consider 'P')\1(q) as given by Eq. (8.88), an 

eigenfunction of IHI 1 which is the generator of the linear subgroup (10.9). 

Retracing our steps in (10.27), using the composition formula (10.8)-(10.9) 

forT= 2it and the geometric action (10.15), we proceed as follows: 

'J"~H(q, t) := (flmll'I'i\1)(q) 

r c(~ -2:t)q.t)\ljcq) 

[ fl{l, (- 2it, 2t 2 , - 2it 3 /3)} 

x n{ (~ - 2:t), (2it, 2t 2 , -2it 3 /3)}'I')\1Jcq) 

= exp(-2At)[fl{l,(-2it,2t 2 , -2it 3/3)}'I')\1](q) 

= exp(2tq + 8t 3/3 - 2A!)'F,~_1(q + 2t 2) 

= exp(2tv) exp(- 2.\t - 4t 3 j3)'¥)\1(v), v := q + 2t 2 . (10.28) 
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Fig. 10.4. Time development of a 
linear potential (Airy) 
'¥A'(q) wave function under 
the diffusion equation. 
Regions where the function 
is positive are drawn with a 
closer grid. Notice that the 
zeros lie on parallel parab
olas. 

This function is shown in Fig. 10.4. The same remarks we made about (10.27) 
are valid here-with some qualification: ':YkH(q, t) is an R-separable function 
of v := q + 2t 2 and /. By R-separability (or separability with a modulation 
factor) we mean a family of functions depending on a parameter ,\ such that 

<D1_(q, t) = R(u, v)U,.(u)V"(v), u = u(q, t), v = v(q, t). (10.29) 

[See Morse and Feshbach (1953, p. 518) and Kalnins and Miller (1974, and 
the references therein).] This enlarged separability definition can be seen to 
work for the problem at hand. We substitute u == t and v := q + 2t 2 into the 
diffusion equation (10.11), using ojoq = ofov, ojot = ofou + 4u ofov and the 
assumed solution form (10.29). We divide by <D", suppressing arguments for 
brevity and indicating partial derivatives by subindices and total ones by 
primes. Rearranging terms slightly, we find 

V" V' ( 2 Rv 4 ) Ru Rvv U' Rv V + V R - u - R = -R + 7J + 411 R' (10.30) 

If this equation is to separate, one member being only a function of v and the 
other of u, we expect all terms in R to cancel out and the expression in 
parentheses to be only a function of v, say, cp(v). The solution to Rv = 

[2u + cp(v)]R is R = x(v) exp(2uv) or, since any function of v alone will be 
absorbed into V(v), R = c exp(2uv) with c constant. Substituting this result 
into (10.30), we find 

V" U' 
- - 2v = - + 4u2 = k v u ' (10.31) 

where, by the usual separation argument, k must be a constant. From (10.31) 
we find that U = c' exp(ku - 4u3/3) and V must be the solution of (8.87) for 
k = - 2.\. Multiplying these results and replacing q and t, we find precisely 
(10.28) up to a multiplicative constant. Of course, had we not chosen the 
correct u(q, t) and v(q, t), the terms in R(u, v) would not have canceled cross
variable dependencies. This method can be used in order to .find R-separating 



www.manaraa.com

Sec. 10.1) Chap. 10 · Applications to Differential Equations 431 

variables [see Kalnins and Miller (1974)]. In any case, the solution of a partial 
differential equation is reduced to the solution of three ordinary differential 
equations. It is the place to point out here that time and again we have 
simplified partial differential equations into ordinary ones by the device of 
"uncoupling," i.e., of finding a convenient basis where the Laplacian operator 
acts by multiplication on the expansion basis functions. This is in essence the 
transform method. Here, we are simply expanding a function into a similar 
basis set, eigenfunctions of an operator which is not necessarily the one 
appearing in the differential equation. What we are using are operators 
which generate various transformation families within a group of integral 
transforms. The useful feature is that a group is binding together the two 
different operators and their eigenbases. 

The separating variables obtained here can be seen in Fig. 10.2(F), where 
the q-t transformations generated by the separating operator ~ 1 [i.e., 'Eq. 
(10.9)] leave the parallel parabolas q + 2t 2 = v = constant invariant. The 
u = constant lines are vertical. As we did with the q-t-separable functions 
before, we can subject the initial condition of (10.28) to various kinds of 
canonical transforms whose effect will be to produce a continuum of other 
separating variable pairs which will turn the above parabolas into similar 
conics. As this continuum can be obtained from the t, v(q, t) pair by canonical 
transformations on the initial conditions, we shall call them all equivalent. 
Note, however, that t, v = q + 2t 2 , and t, q are not equivalent but quite 
distinct. In Section 10.2 we shall further clarify this notion of equivalence. 

We can now use Wand ~h [Eqs. (9.76d)~(9.76e) and (9.77d)~(9.77e)] 
as separating operators. To this end, we consider the time development of 
their eigenfunctions 'Y~.iq) and 'F/(q) [Eqs. (9.87b)~(9.87c)]. Repeating the 
basic scheme of Eq. (10.28), we obtain 

'Fk.~(q, t) := (~H(t)'l'~,a)(q) 

= exp(- ,\arctan 2t) 

r {( (1 + 4t2)1'2 
X L~ 2it(1 + 4t 2)- 112 

= exp[-tq 2/(l + 4t 2)](1 + 4t 2)-l/4 

x exp( -,\arctan 2t)'F~.a(q(l + 4t 2)- 1 ' 2), (10.32) 

'f·~·H(q, t) := OH(t)qtnh)(q) 

= exp[- (n + 1/2) arctanh 2t] 

r {( c1 _ 4!2)1'2 o ) } 1 
X L~ -2it(l - 4t2)-112 (1 - 4!2)-112 '{0, 0, 0) qtnhJ(q) 

= exp[tq 2/(1 - 4t 2)](1 - 4t 2)- 1'4 

(10.33) 
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Fig. 10.5. Time development of the 
repulsive oscillator wave 
function 'Yo.+(q) under 
the diffusion equation. 
Again, the closer grid 
marks the regions where 
the function is positive. 
The zeros lie on concentric 
hyperbolas. 

These are shown in Figs. 10.5 and 10.6. As in the former case, these function 
families are R-separable as in (10.29) for v := q(l + 4t 2)- 1' 2 and v := 
q (I - 4t 2) -1/2, respectively, and u := t. These can be seen in Figs. I 0.2(H) and 
(G). These hyperbolas and ellipses are invariant under transformation gener
ated by IHlr and IHJh, respectively. Note that all separating coordinates we have 
found are such that v( q, 0) = q. If we apply the action of the similarity group 
to the (q, !)-separated normal modes (10.27), we find in general R-separated 
solutions. Thus, Galilean and projective transformations are R-separated 
in (q- tt, t) and [q/(1 + yt), t], respectively. See Figs. 10.3(d) and (e). 

Exercise 10.11. Follow the proof of (10.32) and (10.33) with care. Show that 
the diffusion equation indeed R-separates as suggested. 

Exercise 10.12. In spite of the apparent singularity of (10.33) for t = 1/2, 
show that the solutions extend unscathed beyond this time. 

10.1.6. The Heat Polynomials 

Exercises 10.13-10.15 introduce certain solutions to the diffusion equa
tion termed heat polynomials. 

Fig. 10.6. Time development of the 
harmonic oscillator wave 
function 'Ya•(q) under the 
diffusion equation. The 
zeros lie on concentric, 
convertical ellipses. 
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Exercise 10.13. Consider the following one-parameter subgroup of canonical 
transforms: 

[. ( 1 d 2 d 1)] { (exp(- iT) -sin -r) } 
exp z-r -2 dq 2 + q dq + 2 = D , 0 exp(iT) , (0, 0, 0) . (10.34) 

Prove the equality along the same lines suggested in (10.9)-(10.10), i.e., find the 
integral kernel, and then show that its -r derivative equals i times the action of the 
operator in the exponent [the analogue of (9.75)]. In case this procedure looks 
tedious, we promise the reader that a streamlined process to relate exponentials 
of arbitrary second-order operators and the matrices representing their canonical 
transform subgroups will be given in Section 10.2. 

Exercise 10.14. The importance of (10.34) is that the eigenfunctions of the 
exponent operator are the Hermite polynomials Hn(q) with eigenvalue n + 1/2. 
Show this from (7.166) and (7.170). Hermite polynomials can be obtained from 
'Ynh(q) by a CC-1 ~) transform as it multiplies functions by exp(q 2 /2). Explore 
this complex canonical transform: in (9.43) u = 1 = w/2 but v = 0. Refer to 
(9.71) to show that, indeed, Hermite polynomials are orthogonal with the weight 
function exp(- x2). 

Exercise 10.15. Follow the time development of a temperature distribution 
Hn(q) by the analogue of (10.27), (10.28), (10.32), and (10.33), i.e., expressing 
DHm as the product of a geometric transform and (10.34) for -r = 

(- i/2) ln(l - 4t). The result is found to be 

Hn(q, t) := (1 - 4t)"12Hn(q(l - 4t)- 112) =: 2"vn(q, t- 1/4), (10.35) 

where vn(q, t') arc the heat polynomials. The time evolution of these and their 
relation to power functions fort= 1/4 can be seen from Eq. (7.193). There is 
considerable literature on these [see Hartmann and Wintncr (1950), Rosenbloom 
and Widder (1959), Widder (1962, 1975, Chapter X), and Bilodeau (1974)]. 
Show that the functions (10.35) have the following properties: (a) They are 
polynomials in q and t. (b) vn(q, 0) = q". (c) They are separable functions oft and 
v = q(I - 4t)- 112 • (d) v(q, 0) = q. (e) The multiplier factor R is unity, i.e., we 
have the case of ordinary separation. 

We have worked out the simple diffusion equation in some detail, 
finding new families of solutions which will be shown in Section 10.2 to 
constitute, up to equivalence, all separable solutions to the equation. The 
reasons for being particularly interested in such solutions are the following. 
We have remarked that all separating coordinates are such that v(q, 0) = q. 
If the initial temperature distribution has a number of zeros at, say, q0 , q"' ... , 
then, for all subsequent times, the separated solution (10.28) will have zeros 
at these values of v. The zero-temperature points will thus draw out the lines 

in Fig. 10.2. The solutions appear as in Fig. 10.3, and similar ones produced by 
different choices of (appropriate) separating operators, as in Figs. 10.4-10.6. 

Figure 10.3(a) should bring to memory the diffusive medium between cold 
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walls. In a manner reminiscent of the annular membrane of Section 8.3, if we 
are able to solve the Sturm-Liouville problem between two values, say, q0 

and ql> of one of the separating operators, we shall be able to describe the 
solutions of the diffusion equation between moving cold walls or similar 
time-dependent boundary conditions. This is a "distorted image" method 
adapted to those boundaries which follow conics. In Section 10.2 we shall 
show how the more general parabolic equation (10.1)-(10.2) is subject to this 
treatment by nothing more than-properly applied-matrix algebra. 

10.2. Inhomogeneous Linear Canonical Transforms and Parabolic 
Equations 

In this section we shall examine the class of second-order parabolic 
differential equations (10.1 )-(1 0.2) and see that the concepts developed for 
the diffusion equation in Section 10.1 can be set up in a general framework 
applicable to the whole class. We first show how all operators of interest can 
be reduced by orbit analysis of I to essentially four subclasses represented by 
1111', IHI 1, IH!r, and IHJh [respectively, the free-particle, linear potential, repulsive, 
and harmonic oscillator quantum Hamiltonians, Eqs. (9.76b), (7.61), (9.76d), 
and (9.76e)]. The similarity group of the whole class is I, the inhomogeneous 
linear canonical transformation group. This will determine the similarity 
solutions: eigenfunctions of operators in the set, separating variables, and 
invariant boundaries. 

10.2.1. Transformation of Operators 

Consider the set of operators S';. := {DQ + EIP> + H; D, E, FE 'if} 
introduced in Section 10.1 and its transformation under the action of U{g}, 
Eq. (10.7), where g = m ~), (x, y, z)} E /, the group of real inhomogeneous 
linear transformations. This can be found from (9.1), (10.6), and (10.7) to be 

U{g}(DQ + EIP> + H)O{g}- 1 = (dD- cE)Q + (aE- bD)IP> 

+ (F + yD + xE)1, (10.36) 

that is, /transforms S';. onto itself. Second-order operators~:== {Eq. (10.1); 
A, B, ... , FE 'if} can also be transformed by I onto themselves. It will be 
most convenient to rewrite their general expression as 

(10.37a) 

80 = 2(A- C), 82 = 2(A +C), 83 = D, 84 = E, 

85 = F, (10.37b) 
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where we are using (9.76e), (9.76d), and (9.76a) for Jl 0 , Jl 1 , and Jl 2 and 
defining 

(10.37c) 

The action of I on ~ can be determined from (10.36) plus a little algebra. 
It has the general form 

5 5 

IHI 9 := U{g}IHIU{g}- 1 = L 6~Jik =: ~ rklg)B;Jik. (10.38a) 
k~o J.k~o 

The {B~}~~o are linear functions of the original {Bk}~~o, which transform as 
the entries of a column vector 6 = (60 , 61 , •• • , 65)T under a matrix r(g) 
which represents the group element g E I. Explicitly, 

t(a2 + b2 + c2 + (f2) ,Z(a2-b2 + c2-d2) -cd-ab 0 0 

,Z(a2 + b2- c2- d2) ,Z(a2- b2- c2 + d2) cd-ab 0 0 0 

-bd-ac bd-ac ad+bc 0 0 0 
r(g) = 

!(cx+dy) t(cx-dy) !( -cy-dx) d 0 -c 

1-C -ax-by) tC -ax+by) ,Z(ay+bx) -b a 0 
t(x2+ y2) t(x2-y2) -1-xy y -X 

(10.38b) 

The reason for being interested in these transformations of~ is that a given 
operator IHl may be mapped onto a simpler, known operator IHI 9 • Ifrp~~.(q) is an 
eigenfunction of IHl with eigenvalue.\, then rp/(q) := (U{g}1h)(q) will be an 
eigenfunction of ITU 9 with the same eigenvalue. If the latter eigenfunctions are 
known and the transformation g is a geometric one [Eq. (10.15)], then the 
eigenfunctions of IHl can be found simply as rpl\( q) = (U{g} -l~ /)( q ). 

Exercise 10.13. Prove (10.36) by considering g = {A, ;, z}, 

O{g}0{1, (D, E), F}O{g}- 1 = 0{1, (D, E)A -1, F- (D, E).n;r}, (10.39) 

where .Q := (~ -~)as in (10.8). Elements IHI of~ may be seen as vectors in three
dimensional space with components (D, E, F)T which transform as the entries of 
(10.39) under the lower-right 3 x 3 submatrix of (10.38b). ~ote in particular that 
the column vector (D, E)r __,.A -lT(D, E)r. 

Exercise 10.17. Consider the composition of two transformations (10.39). 
Show that O{gi}O{g2 } = O{glg2} acting on (D, E, F)T. You may come to use 
A.QAT = .Q [this only says that A, an SL(2, 91') matrix, is also a two-dimensional 
symplectic one]. 

Exercise 10.18. Extend the above considerations to IHI seen as six-dimen
sional column vectors e. Show that r(g1)r(g2) = r(g1 g 2), r({1, 0, 0}) = 1, and 
r(g - 1) = r(g)- 1 and that associativity holds. The set of matrices {r(g), g E /} 

constitutes a 6 x 6 matrix representation of I. 
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10.2.2. Orbit Analysis 

The concrete form of f(g) can be used to obtain all operators IHI 9 = 
O{g }IHI O{g} - 1, g E /, which can be "reached" from a given, fixed, operator IHI. 
We shall consider first the case of operators with real coefficients 81• We are 
here specifically interested in second-order parabolic equations (10.1), with a 
nonzero leading coefficient, which will generate one-parameter subgroups (or 
subsemigroups) of canonical transforms describing the time evolution of 
initial conditions. If we multiply an operator IHI by a real constant K, we are 
effectively only changing the time scale without affecting anything essential 
in the system. Similarly, addition of a term k1 to IHI in (10.37) only multiplies 
the solution of the equation by a factor of exp(ikt), which we deem unimpor
tant (see, however, Exercise 10.20). 

We are led thus to consider equivalence classes of operators, 

(10.40) 

which we shall call the orbit of IHI"'. Transformation by I, multiplication by K, 

and addition of a constant define an equivalence relation (see Exercise IO.l9) 
which will divide ~ into disjoint orbits. 

Exercise 10.19. Show that (10.40) are indeed equivalence classes; that is, the 
defining equivalence relation ( =) is (a) reflexive, IHJ = IHJ; (b) symmetric, IHJ = 
IHJ'-= IHI' = IHJ; and (c) transitive, IHJ = IHI', IHI' = IHJn => IHJ = IHJn. The relation 
( =) thus divides ~ into disjoint sets. 

We shall now show that there are exactly six orbits (10.40) in ~ of 
which two are trivial (one is in 9;. and the other is the orbit of the zero 
operator). For the four remaining orbits we shall choose IHI 1, IHJl, IHI', and IHJh as 
representatives. 

The orbit analysis of.~ is aided by constructing 

(10.41) 

associated to the vector 6 which characterizes a given IHI E ~. It is straight
forward to verify that this number is invariant under all transformations 
(10.38). [In group language, the subspace of~ with 83 = 84 = 85 = 0 is 
isomorphic to a three-dimensional Minkowski space-time under SL(2, &?) ~ 
S0(2, I) transformations.] By multiplying IHI by the constant K, 0 is multi
plied by K 2 ; this cannot change its sign, and hence we know that there are at 
least three orbits in ~ corresponding to 0 > 0, 0 < 0, and 0 = 0. Examples 
of operators in these orbits are IHJh (with 80 = 2) for which 0 = 4; IHI' (81 = 2), 
0 = -4; and IHI 1 and IHJf (80 = I = 81), 0 = 0. We shall now examine these 
three cases and see whether we can find transformations g which map arbi
trary operators with these values of 0 onto the four chosen operators, 
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which will then serve as orbit representatives. We need consider only geo

metric transformations (10.15). 

(a) 82 := 0 > 0. For IHl given by(10.37), IHJh = 28- 1 ll{g}m{g}- 1 + H, 

with 

X = 2[84(80 - 81) - 83 82]/0, 

y = 2[84 82 - 83(80 + 81)]/0. 

(10.42) 

We can assume that 80 + 81 =!= 0, as otherwise the operator IHl would contain 
no second derivative. These operators are not physically interesting and 
yield to simpler methods. 

(b) -82 := 0 < 0, W = 28- 1 ll{g}IHlll{g}- 1 + H, with g given again 
by (10.42). 

(c) 0 = 0. Assume first that 80 , 81 , and 82 are not all identically zero. 
Then ll{g }m{g}- \ by a free parameter fL and 

a = [2FLf(8o + 81)]112, c = [(80 - 81)/2FLJ112, (10.43a) 

can be brought to a form where 8~ = fL = 8~, 8; = 0, i.e., an operator 
fL'P2/2 plus terms linear in Q and 'Jl'. A further choice of x andy such that 

(10.43b) 

will eliminate all first derivatives from IHI. The value of the coefficient 8; of Q 

is then fixed, determined only by the free parameter 11. as 

(10.43c) 

The operator we have is thus IHI' = fL'Jl' 2/2 + 8;0 + k~. We cannot make 8; 
vanish, however, unless the expression in brackets in (10.43c) is zero to start 
with. The case 0 = 0 therefore contains at least two subcases: 

( c1) When 8~ in ( l0.43c) is nonzero, we can fix fL so that 8;/ fL = 1, 
thereby bringing the operator to fLIHI 1• 

(c2) When 82 83 - (80 - 81)84 = 0, 8~ in Eq. (10.43c) is zero, and a choice 
of fL = 1 transforms the operator IHl to IHI 1. 

There are two more orbits in the 8 = 0 case: 
(c3) When 80 = 81 = 82 = 0 but the operator is nonzero, it belongs to 

9-;_. It can be always "rotated" to become K'Jl' +constant~. 

(c4) All 8's are zero. A representative of this equivalence class is ~. We 
shall not consider the last two subcases in what follows. 

We asked for the operators IHl in (10.37) to have real coefficients. When 

this condition is relaxed, 0 can be a complex number which under real I 
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transformations is still invariant. We now have in infinity of orbits (10.40), 
one for each phase of 0, and for 0 = 0 a similar unfolding. Our interest here, 
however, centers on real 0's: Schrodinger-type equations where the coeffi
cients are real and diffusive-type equations where the ifD 2 term is pure 
imaginary. An example of the latter is, of course, the diffusion equation of 
Section 1 0.1. Another example, a Fokker-Pianck equation, will be given in 
Exercises 10.20 and 10.22. For diffusive equations it seems best to place the i 
on the time variable and use real I transformations, as before, to relate the D-ll 

operator to a simpler operator in the same orbit. 
Now, if we allow the parameters in g E I to become complex, all 0 "# 0 

orbits coalesce. A change of phase q- q exp(- iw/4) will turn Jl 0 into iJl 1 , 

for example. For quantum-mechanical Schrodinger equations, complex 
transformations are generally meaningless as the .ft'2(flll) norm is changed, 
although this may be just what one needs in order to describe decay. For 
diffusion equations, the requirement that the coordinates and function 
remain real usually restricts the useful transformations to a real parameter 
subset. 

To illustrate the possibilities at hand we propose the following example. 

Exercise 10.20. Consider the Fokker-Planck-type of differential equation, 

82 8 8 
oq2f(q, t) + 8q [qf(q, t)] = a/(q, t), (10.44a) 

which can be written as 

IHJFPf(q, t) := (2JJo + 2JJ1 - 2iJJ2- -1-~)f(q, t) = -iOf(q, t)/8(it), (10.44b) 

with 0 = 4. It is thus in the same orbit as the harmonic oscillator. Verify that, 
for 

. { _1,2( 1 o) 0 o} 
go .= 2 - i 2 ' , ' 

The "normal mode" solutions for (10.44) will thus be 

'Y~P.h(q, t) := exp(t/2) exp[i(n + l/2)(it)](D{g0}-1'1'nh)(q) 

= 2114 exp( -nt) exp( -q 2 f4)'Ynh(2- 1' 2q) 

= k exp( -nt) exp( -q 2 f2)Hn(2- 112q), (10.45b) 

where k is a constant. Check that (10.45b) solves (10.44a). Note that this solution 
is separable in q and t. Its time evolution will propagate the zeros along q = 
constant lines, in analogy with the normal mode solutions (10.27) of the heat 
equation. 

Exercise 10.21. Note that, in asking for a geometric transformation to do 
the job of bringing an arbitrary D-!1 to one of the four chosen representatives, we 
are leaving out three rather important operators: (a) JJ2, which generates changes 
of scale [Eqs. (9.77a) and (10.21)], in the same orbit as D-!1' = 2JJ1 by (9.35); 
(b) -!02 , which generates projective transformations for the diffusion equation 
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[Eqs. (9.77c) and (10.23)], in the same orbit as t1P' 2 by a Fourier(-~ ~)transform; 
and (c) 0, generator of Galilean transformations (10.22) which belong to the 
nonzero orbit in ~- Show that the cases 80 = 81 , specifically excluded in our 
treatment, can easily be incorporated by Fourier transformation. 

10.2.3. Transforming Initial Conditions: The Similarity Group 

To find the relation of a given operator IHJ to its chosen, known, orbit 

representative, we can construct solutions of the former in terms of those of 

the latter. It is thus sufficient to treat only the orbit representative in what 

follows, leaving for exercises a sample calculation for the Fokker-Planck 

equation (10.44). Each of the operators IHJw generates a one-parameter 

subgroup of canonical transformations 

. {(ha hb) } ~W(t) := exp(lf IHJW) =: ~ he hd , (hx, hy, hz) , 

which, acting on a functionf(q), defines a two-variable function 

.fw(q, f):= CUw(tl)(q), (10.47) 

which will be a solution to the differential equation 

IHJ"'f'"(q, t) = -iofw(q, t)/ot. (10.48) 

Now, if the initial conditionf(q) is subject to an I transformation ~{g} 

and turned into another functionfg{q), the subsequent time evolution of the 

latter-following (10.13)-will be 

j 9w(q, t) := (~w(t)f9)(q) = (Ow(t)O{g}f)(q) 

= l~{C: ~1_ 1 ),(x~oY~ozt)}~'"<tJ](q) = [~{Gt}fw(·,tg)](q) 
= a1- 112 exp[i(c1q 2/2a1 + x 1q/a1 + XtYtf2 + z1)]fw(qfat + Yt> t9). 

(10.49) 

The parameters a, c, ... , z- of G1 which depend on t and the function tg(t) 

can be calculated from identities between the elements of the matrix repre

sentatives of Ow(t)~{g} and ~{ G1}0wa9 J, where, note, G1 is a geometric trans

formation. In Table 10.1 we summarize the results for the four orbit repre

sentative operators. It follows that if fw(q, t) is a solution to (10.48), we 

generate a six-parameter continuum of solutions. We thus state that the 

group I is the similarity group for the operator IHlw. The association seen in 

Section 10.1 between the various parameters and geometrical transformations 

such as changes of scale and Galilean and projective transformations is seen 

to be peculiar to the IHJ 1 and 1Hl 1 cases. In general, the v(q, t) = constant lines 

will be rather complicated curves in the (q, t)-plane. In all cases, however, we 
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stress that I is the full similarity group of the differential equation (10.48) 
including both manifest and hidden invariances. 

Exercise 10.22. Continuing with the Fokker-Planck equation introduced 
in Exercise 10.20, show UFP<t> to be 

UFP<tl = U{go} -l exp[i(it)(D-lJh - -!-1)]U{go} 

= n{(exp(-t) -2isinh t) 0 -it/2} 
0 exp(t) ' ' 

(10.50) 

from (10.44), (10.45), and (9.77e). Now, comparing the matrix elements of 
UFPct>D{g} and U{Gt}DFP<tgh show that 

exp(2t9) - 1 = {ib + d[exp(2t) - 1]}/{a - ic[exp(2t) - 1]}, (10.51a) 
a1 = exp{t9)[a exp(- t) - 2ic sinh t], (10.51 b) 

Ct = c exp(t + t9), 

Xt = x exp(t9), 

Yt = y exp(- t9 ) + 2ix sinh t9 • 

(10.51c) 
(10.51d) 
(10.51e) 

In asking for the time variable and the solution to be real, we are led to consider 
b, c, and x pure imaginary-as in the diffusion equation of Section 10.1. 

10.2.4. Similarity Solutions and Separation of Variables 

In keeping with the general plan of presentation of Section 10.1, we 
would now like to examine the time evolution, under D-llw, of similarity 
solutions, i.e., eigenfunctions 'o/A"(q) of a second operator D-ll". One of the 
results of this development will be the definition and explicit calculation of 
four equivalence classes of separating coordinates for our set of differential 
equations. As before, let Dw<tl and Dv<t> be the one-parameter time-evolution 
subgroups generated by D-llw and W [Eq. (10.46)]. Then for a finite neighbor
hood of t = 0 we can always write 

Dwco = D{ Gf"}Duct'>• (10.52) 

where Gf" is a time-dependent geometric transformation binding the two 
evolution subgroups for t' = t'(t). The parameters of Gf" and t'(t) have 
been collected in Table 10.2 for pairs of orbit representative operators. 

Now we proceed as we did in (10.27), (10.28), (10.32), and (10.33), using 
the fact that Duct'> acting on ':Y A "(q) multiplies it only by a factor of exp(iM '): 

'o/~·w(q, t) := (Dw<tl'I'A")(q) = (D{Gf"}Duct'l'I'A")(q) 

= exp(iM')(D{Gf"}'l'/)(q) 

= a1- 112 exp[i(c1q2/2at + Xtqfat + XtYtf2 + Zt + A!')] 

x 'o/A"(qfat + Yt) 

= exp{i[c1a1v2/2 + (x1 - c1a1y1)v]a1- 112 

x exp{i[ -ytCxt- ctatYt)/2 + z1 + M'(t)]}'o/A"(v). (10.53) 
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In the last expression, we have rearranged the factors so as to display the 
R-separability of the function 'F}"'(q, t) as the function ':Y"'"(v) of v(q, t) = 
qfa1 + y1 times a function oft times a multiplier involving v and t but inde
pendent of A. [Recall Eq. (10.28) and the ensuing discussion.] The pair of 
coordinates (v, t) are the coordinates separated by IHI" of the differential 
equation (10.48) for IHI"'. In Table 10.3 we have collected these coordinates 
and the multiplier functions for all pairs of orbit representative operators. 

10.2.5. Equivalent and Nonequivalent Separating Coordinates 

To bring out the significance of equivalent coordinate systems, consider 
first the case when IHI"' and IHI" belong to the same orbit, i.e., there exists a 
similarity group element g E I such that 

(10.54) 

Then 

':Y~·"'(q, t) := (Oco(!l'l\")(q) = COw(t)O{g}'l\"')(q) = (O{Gt}Dco(t')'l\"')(q) 

= exp(iM')(O{G1}'1\"')(q). (10.55) 

Indeed, this is just (10.49) when the choice for f(q) is ':Y"' "'(q), so thatf(q, t) is 
exp(iM')':Y"'"'(q), a separable function in q and t. The conclusion is that when 
IHI"' and the separating operator IHI" belong to the same orbit, the separating 
coordinates (v, t) of the former can be obtained from the Cartesian ones by a 
transformation in the similarity group of the equation. These will be taken 
to be equivalent. (Compare Fig. 10.3.) Now, if IHI"' and IHI" belong to different 
orbits, the separating coordinates are inequivalent. 

To find all coordinate systems equivalent to a given [v(q, t), t] defined 
by an orbit representative operator IHI", consider the action of Dw<t> on 
(O{g}'l\")(q). This will give the coordinates associated to O{g}IHI"O{g}- 1 . 

Proceeding by (10.49) and (10.53), we obtain 

(Ow<t>O{g}'l\")(q) = (O{Gt}Dw<t.>'I'A")(q) 

= (0{ Gt}O{G~"}Do<t~>'l' "'")(q) 

= exp{i.At~)(D{ G1G~"}'I' "'")( q ). (10.56) 

In other words, we have only to apply the transformations of Table 10.1, 
representing G1 and fg, to those of Table 10.2, representing Gf" and t'(t). If 
the former are the identity, we obtain Table 10.3 from (10.53). 

Exercise 10.23. Implement (10.56) for the case of the free-particle Schro
dinger equation. This case leads both to algebraically manageable results and to 
conclusions which are relevant for the diffusion equation. Show that the coor
dinate systems equivalent to (q, t) (f-fbox in Table 10.3) are given by 

v = [q + (dx- cy)t + (ay - bx)]/(a - ct) (10.57a) 
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and t. The coordinate systems equivalent to (q - ! 2/2, t) (f-1 box in Table 10.3) 
are 

v = [q + (dx - cy)t + (ay - bx)]f(a - ct) - -H(dt - b)f(a - ct)P (10.57b) 
and t, and those equivalent to (q(1 + 12)- 112, t) (boxesf-r and/-h of Table 10.3) 
are 

v = [q + (dx - cy)t + (ay - bx)][(a - ct)2 + (dt - WJ- 112 (10.57c) 
and t. Note that all the coordinate lines v = constant are conic sections. Can you 
find their axes and foci? 

Exercise 10.24. Find the multiplier exponents S(v, t) which generalize those 
of Table 10.3 according to (10.57). Recall the transform in Exercise 10.15 which 
led to the heat polynomials. Show that the multiplier function which corresponds 
to the coordinate system separated by the generator of (10.34) is unity, as (10.35) 
clearly shows. This is the free-particle counterpart of the heat polynomials. Can 
you show that this system and the Cartesian one are essentially (up to translations 
and dilatations) the only completely (R = 1) separating coordinate systems? 

Table 10.1 Geometric and Time Transformation Parameters for the Action of a 
General Element in I on the Solutions of the Differential Equation 
IHJWf = - iO,fa 

Operator 
IHI"' 

IHJf = tiP'2 

IHI' = t1P' 2 + 0 

Time t.(t) 
transformation 

dt- b 
19 = a - ct 

dt- b 
19 = a - ct 

h dtanh t- b 
tan 19 = a - c tanh t 

dtan t- b 
tan 1" = a - c tan t 

Geometrical 
transformation 

Gt = a- Ct, Ct = C, Zt = Z, 

( 1 tg) 
(x,, y,) = (x, y) 0 1 

Gt = a - Cl, Ct = C, Zt = Z, 

<x,,y,) = [<x,y) + (t, -! 2/2}(: !) 
- (tg, - tg2/2} ](~ t;) 

a1 = (a cosh t - c sinh t)/cosh t9 

= (d sinh t - b cosh t)/sinh t9 , 

c, = (c cosh t - a sinh t 
+ a, -l sinh t9 )/cosh t9 , 

( cosh t9 sinh t9 ) 
(x,,y,) = (x,y) . h h , 

Sill (9 COS ( 9 

z, = z 

a, = (a cost - c sin t)/cos t9 

= (d sin t - b cos t)/sin t9 , 

c, = (c cost + a sin t -
a1 -l sin t9)/cos 19 , 

(x.,y,)=(x,y) . ( cos t9 sin t9 ), 

-Sill 19 COS ( 9 

z, = z 

a The heat equation can be related to case/by substituting t---'>-2it, b =:- 2if3, c =: iy/2, x =: 
ig/2, z =: i,. 
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Table 10.2 Parameters and Time Transformation for the Evolution, Governed by 
IHI"'~K = - i81 ~K, of the Eigenfunctions of an Operator IHI" a 

f 

f 

t' = t 
a,= 1, 
Xt = 1 

Yt = 12 /2, 
Zt = 13 /12 

t' = t 
a,= 1, 
Xt = -1 

Yt = -1 2/2, 
Zt = -1 3 /12 

r t' = tanh t t' = tanh t 
a, = cosh t a, = cosh t 
c, = -sinh t c, = -sinh I 

Xt = -t' 
Yt = -1'2 /2 
Zt = 1'3 /12 

r 

tanh t' = t 
a, = (1 - 12) 112 

Ct = t(1 - 12)-112 

tanh t' = 1 
a, = (1 _ 12)112 

c, = t(l - 12)-112 

Xt = I (I - 12 /2)(1 - t 2 ) -11 2 

Yt = -!t2(1 _ 12)-112 

z, = -13 /12 

h 

tan t' = 1 
a, = (I + 12)112 

c, = -t(1 + 12)-112 

tan t' = 1 
a, = (1 + 12)112 
c, = -t(l + /2)-112 
x, = 1(1 + 12/2)(1 + 12)-112 
y, = -!t2(1 + 12) -112 
Zt = -1 3 /12 

tan t' = tanh t 
a, = (cosh 2t)112 

c, = -sinh 2t(cosh 21)- 112 

h t' = tan t t' = tan t 
a,= cos I 
Ct = sin t 
Xt = -t' 

tanh t' = tan t 
a, = (cos 21)112 a, = cost 

c, = sin t 

Yt = -1'2 /2 
Zt = /' 3 /12 

c, = sin 2t(cos 2t)- 112 

a Refer to Eqs. (10.52)- (10.53). The entry I means t' = t and a,= I, c1 = 0. Missing entries arc zero. (As 
in Table 10.1, the heat equation is related to case /by t __,.Zit. The results appear explicitly in Section 10.1.) 

If we are faced with a differential equation of the type (10.48) with given 
initial (t = 0) and moving boundary conditions, our procedure would be to 
see whether we can find separating variables such that the coordinate curves 
match the boundaries. If they do, there is an associated operator whose 
Sturm-Liouville problem in the appropriate interval yields the best function 
set in which to expand the initial t = 0 data, so that they naturally follow the 
constancy conditions at the moving boundary. This is in essence the familiar 
image method but applied to moving, distorting, mirrors. 
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Appendix A 

The Gamma Function 

The factorial of a natural number n is defined as 

n! := n(n- 1)(n- 2)·· ·3·2·1. (A.l) 

Recursively, it can be characterized by 

n! := n(n- 1)!, (A.2) 

A function which generalizes the factorial for complex numbers is the gamma 
function, defined by the Euler integral 

f(z):= f"duz- 1 exp(-t) 

= 2 fa"' duu 22 - 1 exp( -u2), Re z > 0. (A.3) 

From this form it follows by integration by parts that 

r(z + 1) = zf(z), f(l) = 1, (A.4) 

and hence 

f(n) = (n- 1)!. (A.5) 

We can define f(z) for Re z :( 0 by f(z) = f(z + 1)/z repeated the number 
of times necessary for the argument to reach positive values for the real part. 
A special value is 

rm = 7T 112 = 1.7724538509 ... ' (A.6) 

found from the last expression in (A.3), which is just the integral (7.21). A 
plot of the gamma function appears in Fig. A.l. It is an analytic function with 
simple poles at zero and the negative integers, since 

f(x- n) = (x- n)- 1f(x- n + 1) = · ·. 
= ( -I)n[(n- x)(n - I - x) · · · (1 - x)x]- 1f(l + x). (A.7a) 

445 
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Fig. A.l. Real, imaginary, and 

absolute values of the 

gamma function r(z) 

in the complex plane of 

the argument. Re z E 

( -3, 3), ImzE( -2, 0). 

Simple poles are pre

sent at z = 0, -1, 

-2, .... 

Thus for x--+ 0 the residues of the poles are 

(A.7b) 

Two other expressions for the gamma function, the Euler infinite limit and 

the Weierstrass infinite product, can be seen, for instance, in Whittaker and 

Watson (1903, Chapter 12). In the former we can find the proofs of the 

following useful relations: the Gauss multiplication formula 

and the reflection formulas 

n~I 

r(nz) = (21T)<l-n)/2nnX-l/2 n rcz + k/n) 

k~o 
(A.8) 

r(z)r(l - z) = '"csc('"z), 

ret + z)r(t - z) = '"sec('"z). 

(A.9a) 

(A.9b) 

The numerical computation of the gamma function is usually performed 

by approximating it by the polynomial 

rcz + 1) = 1 - 0.577191652z + 0.988205891z2 - 0.897056936z3 

+ 0.918206857z4 - 0.756704078z5 + 0.482199394z6 

- 0.193527818z7 + 0.035868343z8 + e(z), 
(A.lO) 
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which for 0 ~ z ~ 1 is valid with je(z)i ~ 3 x I0- 7 • The argument is moved 
tothestripO :-;; Rez :-;; 1 byrepeateduseof(A.4)or(A.7a);then,ifneedbe, 
the absolute value of the imaginary part is contracted to less than 1- with the 
use of the Gauss formula (A.8). For this and several other computer algo
rithms and approximations, see Hastings (1955) and the periodically updated 
communications of the American Computer Society (ACS). The analytic 
aspects of the gamma function have been elegantly developed by Artin (1964) 
and Losch and Schoblik (1951). A summary of properties, tables, and 
references can be found in Abramowitz and Stegun (1964, Chapter 6). 
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Appendix B 

The Bessel and Related 
Functions 

We define the Bessel function of integer order k as 

Jiz) := (277)- 1 f_", dB cos(z sin B ...,.. kB). (B.l) 

This was Bessel's original definition in 1824 [see Watson (1922, Section 2.2 
and the references therein)]. It leads to our first use of this function in Eqs. 
(5.48c)-(5.50) by the following steps involving trigonometric identities, 
considerations about the parity of the functions, and the invariance of (B.l) 
under B --+ ± B + a: 

f, dB cos(z sin fJ - kB) =f .. d8 exp(iz sin 8) exp(- ik8) 

= r, d8 cos(z sin 8) exp(- ik8). (B.2) 

With the substitutions 8 = x/2, k = 2(n - m), and z = 2T(k/M)1' 2 we obtain 
(5.48c). 

The middle term in (B.2), with the substitution t = exp(i8), gives us 
(B.l) as a closed contour integral around the origin: 

Jk(z) = (27Ti)- 1 f dtt-k- 1 exp[z(t- t- 1)/2]. (B.3) 

It follows from here that the Jk(z) are the Laurent series coefficients of the 
exponential function in the integrand, i.e., 

Giz, t) := exp[z(t - t- 1)/2] = 2; Jk(z)tk. (B.4) 
ke;z 

449 
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This is the Bessel generating function. For t = i exp(i8) and z = pq we obtain 
(8.78). From (B.l) we can see that J"(z) is an analytic function of z in the 
neighborhood of z = 0. Its Taylor expansion can be found from (B.3) by the 
Taylor expansion of the exponential and the Cauchy integral (8.12) for 
g(s) = s": 

f ~ 1 (zt)m ~ 1 (-Z)" J"(z) = (bri)- 1 dt L, 1 -2 L, 1 -2 t-1<-l 
m=Om. n=On. t 

~ (-1)" (z)m+n f = L, -,-, _ (27Ti)-l dum-n-1<-l 
m,n=o m. n. 2 

i ( -1)" (!.)2n+k 
n=on!(n+k)! 2 · 

(B.5) 

For k an integer it thus follows that 

lie"'mz) = eiknmliz). (B.6) 

The ratio test shows that this series converges for all finite z. Equation (B.5) 
can be generalized for complex values of the index by the gamma function: 

00 

J"(z)== 2: c-r)"[n! rcn + k + r)]- 1(z/2)2"+", 
n=O 

In particular, for k = ± !, we find 

J112(z) = (2/7Tz)112 sin z, 

1 -l/2(z) = (2/'"z)112 cos z. 

kEC(/. (B.7) 

(B.8a) 

(B.8b) 

The Bessel function J"(z) has a countable infinity of simple real zeros 
for z > 0 and, at z = 0, a k-fold zero. The location of j"·"' the nth zero of 
J"(z), is an increasing function of k. These zeros are transcendental numbers 
bounded from below by k, and as n ~ w their spacing increases monotoni
cally, tending toward 7T. They interlace since jk,n < jk+l,n < jk,n+l < 
jk+l,n+l < · · ·. Table B.l gives the first zeros of a few low-order Bessel 
functions. 

Table B.l Zeros of the Bessel Function j"" 

0 2 3 4 5 

1 2.40482 3.83171 5.13562 6.38016 7.58834 8.77148 
2 5.52007 7.01559 8.41724 9.76102 11.06471 12.33860 
3 8.65372 10.17347 11.61984 13.01520 14.37254 15.70017 
4 11.79153 13.32369 14.79595 16.22347 17.61597 18.98013 
5 14.93091 16.47063 17.95982 19.40942 20.82693 22.21780 
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A Christo.ffel-Darboux three-term recursion relation for Bessel functions 
can be obtained by differentiating the generating function (B.4) with respect 
to t: 

2 kJk(z)tk-l = 8GB(z, t)fot = (z/2 + z/2t 2)GB(z, t) 
ke;!C 

= 2 z[Jk(z) + Jk+2(z)]tkj2, (B.9) 
ke;!C 

where we have shifted the dummy sum index where necessary. Linear inde
pendence of the power functions then implies 

(B.IO) 

Similarly, differentiating (B.4) with respect to z and rearranging terms by 
(B.9), we find the raising and lowering operators, 

(kfz + dfdz)Jiz) = Ju1(z), (B.ll) 

which can also be seen to hold directly by the series expansion (B.7). 
Equation (8.65) can be shown to hold for integer N(integerorhalf-integer 

p.) by noting that for N = 2 (p. = 0) it coincides with (B.l) for k = 0. For 
N = 3 (p. = 1/2) the integral is elementary and leads correctly to (B.8a). 
Last, the Bessel function as given by (8.65) can be seen to satisfy (B.ll) by 
integration by parts. 

Applying the raising and lowering operators (B.11) in either order to 
Jk(z), we find that the Bessel function satisfies the second-order differential 
equation 

(z2 ~22 + z~ + Z 2 - P)Jiz) = 0. (B.12) 

This is Bessel's differential equation. As is true for any (Fuchsian) equation, 
(B.12) has two independent solutions. They are J,c(z) and J -k(z) fork not an 
integer; when k is an integer, these two functions are not linearly independent, 
but 

(B.13) 

as can be ascertained from (B.7) by observing that the r-function in the 
denominator of J -k(z) has poles for n = 0, 1, ... , k - 1, so the sum actually 
starts from n = k. In the case of integer k, the second solution to (B.12), built 
for real k as 

(B.l4) 

defines the Neumann function (also called Bessel of the second kind or Y
function). Ask approaches integer values, Nk(z) continues to be a well-defined 
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function which can be found from L'Hospital's rule. Its explicit series ex
pression can be found in the literature [see, for instance, Arfken (1966, 
Section 11.2), Whittaker and Watson (1903), and, of course, Watson's 
treatise (1922); the last contains a very complete account of these functions]. 
Bessel and Neumann functions have been plotted in Figs. B.l and B.2. 

Fig. B. I. The Bessel function Jm(z) 
for mE (- 5, 1 0) and z E 

(0, 20). The function be
comes infinite at z = 0 
for all noninteger nega
tive m. A closer grid 
details this region. 

Fig. B.2. The Neumann function 
Nm(z) for mE(-5,10) 
and z E (0, 20). The point 
z = 0 is singular. A 
closer grid details the 
negative m region. 
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Some of the main properties of Bessel vs. Neumann functions are their 
behavior at the origin: 

JK.(z) ~ [2kr(k + l)]- 1z\ ki= -I, -2, -3, ... , (B.l5a) 
z-o 

N~c(z) ~ -2k7T- 1r(k)z-k, k i= 0, N 0(z) ~ 27T- 1 ln z. (B.l5b) 
z-o z-o 

Their asymptotic behavior can be shown to be 

l~c(z) ~ (2/7TZ)112 cos[z - 7T(k + 1/2)/2], (B.l6a) 
z-ro 

N~c(z) ~ (2/7Tz)112 sin[z - 7T(k + l/2)/2]. (B.16b) 
z-ro 

[See Watson (1922, Chapter VII).] Both Bessel and Neumann functions 
satisfy the three-term and differential recursion equations (B.IO) and (B.ll). 
The properties of the zeros (simplicity, reality, spacing, and interlacing) are 
common to both functions. 

The modified Bessel differential equation 

(B.17) 

has solutions l~c( ± iz ). It is convenient to introduce the modified Bessel 
functions 

{exp(i7Tkj2).!~c( exp(i7T/2)z ), 
I~c(z) := 

exp(3irrk/2)J~c( exp(- 3i7Tj2)z ), 

which have the series expansion 

CXl 

-77 < arg z ~ 7Tj2, 
(B.l8) 

7Tj2 < arg z ~ 7T, 

I~c(z) = L [n!r(n + k + I)]- 1(z/2)2n+k. (B.19) 
k=O 

[Compare with (B.7).] Fork not an integer, independent solutions of (B.l7) 
are provided by /Jc(z) and Liz). When k is an integer, Ln(z) = In(z). Sug
gesting analogy with Neumann functions, one defines the Macdonald function, 

(B.20) 

which is independent of I~c(z) for all k. The limits and asymptotics of the /
and K-functions are 

I~c(z) ~ (z/2)kjr(k + 1), k i= -I, -2, -3, ... , (B.2la) 
z-o 

K~c(z) ~ (z/2)-kr(k)/2, k i= 0; K0(z) ~ -In z, (B.2lb) 
z-o z-o 
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liz) ~ (27Tz)- 112 exp(z), 
z-ro 

Kk(z) ~ (7rj2z)l 12 exp( -z). 

·-"' 
For real z and positive k, both functions are free of zeros. 

(B.22a) 

(B.22b) 

From the Bessel modified equation we shall obtain another important 

differential equation. Let y == (3zf2) 213 and write (B.l7) in terms of it for 

g(y) = f(z); then define g(y) =: y- 112h(y). When k = 1/3, terms cancel, and 

we are left with Airy's equation: 

(B.23) 

Equation (7.61) is found from here by y =: 21'3q. It thus follows that 

y 1' 2I ± 113(2y3'2/3) and y 112 K 113(2y312/3) will be solutions to (B.23). Actually, 

one defines the first and second Airy functions: 

Ai(y) := 7T- 1(y/3)112 K113(z) 

= yli2[I_ l!a(z) - /l/3(z)]/3, 

Ai(-y) = yll2[f_l/3(z) + Jl/3(z)], 

Bi(y) := (y/3)112[L 113(z) + !1!3(z)], 

Bi(- y) = (y/3)112 [1 -11a(z) - f113(z)], 

(B.24a) 

(B.24b) 

(B.24c) 

(B.24d) 

These are plotted in Figure B.3. The Taylor expansions are of the form 

Ai(y) = c1F1(y) - c2F2(y), 

Bi(y) = 3112[c1Fl(y) + CzF2(y)], 

where the constants are 

(B.25a) 

(B.25b) 

c1 = 3- 213fr(2/3) = 0.35502805 ... = Ai(O) = 3- 112 Bi(O), (B.26a) 

c2 = 3- 113fr(lj3) = 0.25881940 ... = -Ai'(O) = 3- 112Bi'(O) (B.26b) 

5. 

-.5 

Fig. B.3. The Airy function of first and second kind. 
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and the functions are 

"' 
Fn(y) = 2 3m(n/3)m[r(3m + n)]-ly3m+n-I, n = 1, 2, (B.27a) 

m=O 

where we have used Pochhammer's symbol 

(a)m :== a(a + 1)(a + 2)· ··(a+ m- 1) = r(a + m)jr(a). (B.27b) 

For y ---3>- + oo, the asymptotics are 

Ai(y) :::' 2-171'-112y-114 exp( -2y3'2/3), 

Ai(- y) :::' 71'-112y-li4 sin(2y3'2/3 + 71'/4), 

Bi(y) :::' 71'-l/2y-li4 exp(2y3'2/3), 

Bi(- y) :::' 1T- 112y 114 cos(2y312/3 + 71'/4). 

(B.28a) 

(B.28b) 

(B.29a) 

(B.29b) 

The integral expression (7.64), which we asserted represents the Airy 
function, can be put in terms of the usual and modified Bessel functions as 
in (B.24). The process is rather involved, so we refer the interested reader to 
the book by Watson (1922, Section 6.4). References to Airy's original 
"rainbow" equation and the solutions by Stokes and Hardy appear there. 

Further properties and tables for the Bessel and related functions can be 
found in Abramowitz and Stegun (1964, Chapters 9 and 10), while integrals 
of Bessel functions-as for the Green's functions in Section 5.3-and Struve 
functions, mentioned in Section 8.5, occupy Ch::tpters 11 and 12 of Abramo
witz and Stegun. Further references and tables have been given in Sections 
5.2, 5.3, and 6.4. 
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Some Summation Formulas 

Let A(m, n) be a function of two discrete variables m, n = 0, I, 2, ... , i.e., 
on the points of Figure C. I. We assume that the sumS converges, regardless 
of the order in which it is performed: 

co co co 00 

S := 2 2 A(m, n) = 2 2 A(m, n). (C.l) 
n=O m==O m=O n=O 

This only means that in one case we sum over columns and in the other over 
rows. We can also perform the summation over diagonals (thin lines in 
Fig. C.l) as 

S ~~ [A(O, 0)] + [A(O, 1) + A(l, 0)] + [A(O, 2) + A(l, I) + A(2, 0)] + · · · 

+ lm~o A(m, n - m)J + · · · = n~ ~0 A(m, n - m). (C.2) 

The same sum can be done following 60° directions (broken lines): 

S = [A(O, 0)] + [A(O, I)] + [A(O, 2) + A(!, 0)] + [A(O, 3) + A(l, I)] + · · · 

r n/2 .1 r<n- 1)/2 l 
+ ,;?o A(m, n- 2m)Jneven + L ~o A(m, n- 2m) nod/ ... 

oo [n/2] 

2 2 A(m,n- 2m), (C.3) 
n=O m=O 

where [n/2] is the largest integer not exceeding n/2. For example, [2] = 2, 
[5/2] = [2.5] = 2, etc. The same argument can be used to sum the A(m, n) 
along lines which run one unit to the right and r units down, obtaining 

oo [n/r] 

S = 2 2 A(m, n - rm). (C.4) 
n=O m=O 

457 
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Fig. C.l. Various summation orders on an 
infinite two-dimensional lattice of non
negative integers. 

n 

When triple sums of A(k, m, n) appear, the sum can be performed over 
diagonals in space; thus 

00 00 00 

T := 2 2 2 A(k, m, n) 
k=O m=O n=O 

co co min(k,m) 

2 2 2 A(k - n, m - n, n) 
k~o m=O n=O 

oo oo min([k/r]. [m/s]) 

2 2 2 A(k - rn, m - sn, n). (C.5) 
k=O m=O n=O 

The middle term has been used in (7.183). Equations (C.l)--(C.4) can now 
be employed to produce further identities involving the first two indices of the 
sum. 
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Notation 

General Conventions 

a (lowercase 
boldface) 

A (uppercase 
boldface) 

d (script) 
A (double) 
a* (asterisk) 

At (dagger) 

Re real part 

vector 

matrix 
set 
operator 
complex 
conjugate 
adjoint 

Im imaginary part 
Res residue 

'?? set of complex numbers 
f!J? set of real numbers 
!!l' set of integer numbers 

Symbol List 

!!t+ set of natural numbers 
.L sum 
n product 

(a, b) open interval 
[a, b] closed interval 

ial absolute value of a 
(a, b) inner product of a and b 

/!all norm of a 
(an) vector with 

components an 
II Amnii matrix of elements Amn 

E is an element of 
.- is defined as 
-. defines 
=> implies, only if 
<= is implied by, if 

Ai(z) Airy function of the first kind [Eqs. (B.24a), (B.24b)] 
Bi(z) Airy function of the second kind [Eqs. (B.24c), (B.24d)] 

B Bargmann transform matrix [Eqs. (9.55)] 
!JiJM canonical transform of 2'2(f!J?)-space [p. 394] 

CM(q', q) canonical transform integral kernel [Eqs. (9.8)] 
(;M Canonical transform Operator [p. 382] 
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'(;' t 00 

[])a 

D~c(x) 

lEx 
Un}~=1 
{/,}~= 1 
Un}nez 

](p) 
JB(g') 
JBL(s) 

faBM()I) 
jL(s) 

JM()I) 
JM(q') 

.lc(p) 
faoo(q) 
f (e) g 

F 
F = [[Fmn[[ 

IF, IF- 1 

IFcNJ, IFc"N~ 

G:Jq, t) 
Gw(q) 

G(t) 

Gu(l) 
Gw 

Hn(q) 
IHin 

IHI 11 , IHI; 1 

IHI/, IHI~- 1 

IHJf, IHJI, IHJr, IHJh 

I 

Mx) 
lo (Do) 

DFP(t) 

space of infinitely differentiable functions of fast decrease 
[p. 263] 
dilatation operator [Eq. (7.34)] 
Dirichlet kernel [Eq. (4.19)] 
multiplication by exponential operator [Eq. (7.29)] 
coordinates of vector f E "f/N [Eq. (1.2)] 
Fourier transforms of Un}~= 1 [Eq. (1.51)] 
Fourier series coefficients ofj(x) [Eq. (4.17b)] 
Fourier transform of f(q), q E !Ji [Eqs. (7.1)] 
Bargmann transform ofj(q) [p. 399] 
bilateral Laplace transform ofj(q) [Eqs. (8.1)] 
bilateral Mellin transform ofj(q) [Eqs. (8.26)] 
Laplace transform ofj(q) [Eqs. (8.9)] 
Mellin transform of f(q) [Eqs. (8.29)] 
M-canonical transform ofj(q) [Eq. (9.5)] 
Cauchy representation ofj(q) [Eq. (7.136)] 
function with support on [a, oo) [Eq. (7.125)] 
product relative to e-basis [p. 102] 
Fourier canonical transform matrix [Eq. (9.32)] 
Fourier (finite) transform matrix [Eq. (1.48)] 
Fourier integral transform operator and its inverse [Eqs. 
(7.1)] 
N-dimensional Fourier transform and its inverse [Eqs. 
(8.38)] 
Green's function for a system 
Gaussian bell function of width w [Eq. (7.20)] 
time-evolution operator [finite lattice, p. 54; heat equation, 
p. 199; wave equation, p. 210] 
phase-space evolution operator [Eq. (2.113)] 
Gaussian operator [Eq. (7.74)] 
hermite polynomials [Eq. (7.192)] 
phase-space evolution generator [Eq. (2.107)] 
Hankel transform operator and its inverse [Eqs. (8.83)] 
Hankel-Bochner transform operator and its inverse [Eqs. 
(8. 66)] 
Schrodinger Hamiltonian operators for the free particle, 
linear potential, repulsive and attractive oscillator [Eqs. 
(9.34), (9.76)] 
group of inhomogeneous linear canonical transformations 
[p. 420] 
modified Bessel function [Eq. (B.18)] 
inversion matrix (operator) [Eqs. (1.54), (1.82), and (4.41)] 
time-evolution operator of the Fokker-Planck equation [Eq. 
(10.50)] 
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llH(t) 
ll{M, !;, z} 

llw(t) 
jmn 

lm(x) 
Jo, Jr. J2, J ± 

KB(q', q) 
Kn(x) 

IK, C, M 
L 

l, l- 1 

lB, ln 1 

.9f 
Q 

R<<.nl(x) 
R (!R) 

Ro 
Ro 
R<> 
R0 

SN-1 

s<P.nl(x) 

SL(2, 3£) 
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time-evolution operator of the diffusion equation [p. 442] 
inhomogeneous linear canonical transform operator [Eqs. 

(10.7)] 
time-evolution operator generated by IHI"' [Eq. (10.46)] 
nth zero of lm(x) [Table B.1] 
Bessel function [Appendix B) 
set of second-order differential operators [Eqs. (7.174), 

(9.34), (9.76), (10.37c)] 
Bargmann reproducing kernel [Eq. (9.63)] 
Macdonald function [Eq. (B.20)] 
lattice interaction, damping, and mass operators [p. 51] 
Laplace transform matrix [Eq. (9.68)] 
Laplace transform operator and its inverse [Eqs. (8.9)) 
bilateral Laplace transform operator and its inverse [Eqs. 

(8.1 )] 
space of (Lebesgue) square-integrable functions over the 
interval J [p. 142 and 264] 
space of (Lebesgue) square-integrable functions which 

,vanish at the boundary of a region R [p. 222] 
space of (Lebesgue) square-integrable functions on J c:; 3£ 

with weight function w(x) [p. 297] 
Mellin transform operator and its inverse [Eqs. (8.29)] 
bilateral Mellin transform operator and its inverse [Eqs. 

(8.26)] 
Neumann function [Eq. (B.14)] 
"cut" power functions [Eq .(7 .202)] 
permutation matrix [Eq. (1.45)] 
- i times the differentiation operator (the quantum-mechani
cal momentum operator) [Eq. (7.56)] 
principle value of an integral [Eq. (7.138)] 
multiplication by argument operator [Eq. (7.55)] 
rectangle function of width e and height TJ [Eqs. (4.24), (7.4)] 
rotation matrix (operator) [Eq. (1.81)] 
(hyper-) rectangular region [p. 223] 
circular region [p. 230] 
sectorial region [p. 240] 
annular region [p. 243] 
sphere in N dimensions [p. 363] 
square wave of P pulses and height TJ [Eqs. (4.39)] 
group of unimodular 2 x 2 real matrices [p. 390] 

Yr, .'~; set of first- and second-order differential operators [p. 434] 

Th(x) triangle function of height h [Eq. (4.28)] 
lr a translation operator [Eqs. ( 4.36a), (7.27)] 
Olf set of unitary matrixes [p. 14] 
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j/N N-dimensional complex vector space [Sect. 1.1] 
W Heisenberg-Weyl group [p. 418] 

W1 equivalent width ofj(q) [Eqs. (4.69a), (7.222)] 
W(t) Gauss-Weierstrass transform matrix [Eq. (9.67)] 

W(x, y, z) (Heisenberg-Weyl) W transform operator [Eqs. (10.3)] 
21, 2 harmonic oscillator raising and lowering operators [Eqs. 

(7.160)] 

r(x) gamma function [Appendix A] 
r(g) 6 x 6 matrix representation of the inhomogeneous canonical 

transformation g [Eqs. (10.38)] 
S(q) Dirac S [Eqs. (4.79), (7.85)] 

s<nl(q) nth derivative of the Dirac S [Eqs. ( 4.94), (7.87)] 
Sy, y E Y Dirac's generalized basis [pp. 133, 183] 

Sm,n Kronecker o [Eq. (1.6)] 
!:,1 dispersion of f(q) [Eq. (7.217)] 
11 matrix representative of A in the e-basis [Eq. (1.60)] 
2i matrix representative of A in the q>-basis [Eq. (1.62)] 
A second-difference operator [p. 21] 

{en};;'= 1 basis for j/N [Sect. 1.1] 
em(t) lattice fundamental solutions [Eqs. (2.41), (2.42)] 

8(x, t) (Jacobi) theta function [Eq. (4.64)] 
0(q) Heaviside theta function [Eq. (7.89)] 

0,(q) causal exponentially damped function [Eq. (7.123)] 
vM(q, q*) weight function for the CM transform space (Eq. (9.47)] 

Yc(q) coherent states [Eqs. (7.188)] 
{ <f>n}::'= 1 finite Fourier transform basis [Eqs. (1.52)] 

q>m(t) lattice normal modes [Eqs. (2.46)] 
<pn(x) imaginary exponential functions [Eq. (4.9)] 

<pn(x, t) vibrating string normal modes [Eqs. (5.31)] 
<pnY(t) infinite lattice normal modes [Eqs. (5.52)] 

<pn1,n,(x1, x2, t) rectangular membrane normal modes [Eq. (6.12)] 
<p~n(r, </>, t) circular membrane normal modes [Eq. (6.27)] 
<p;';n(r, </>, t) sectorial membrane normal modes [Eq. (6.34)] 

Xil ±(q) repulsive oscillator wave functions [Eqs. (7.203)] 
'¥ n(q ), '¥ n h(q) harmonic oscillator wave functions [Eq. (7.166)] 

'Yii·,H(q, t) time evolution of'Yil·(q) under the diffusion equation [Eqs. 
(10.27), (10.28), (10.32), (10.33)] 

Q symplectic 2 x 2 metric matrix [Eqs. (10.8), (10.39) et seq.] 
f.!"' class of operators in the same orbit as IHI"' [Eq. (10.40)]. 

G:\mJ) permutation [p. 14] 
"' differentiation operator 

"'ii2,£ Laplacian operator 
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The most basic account of a topic is indicated by an italic page number. 

Adjoint 
under complex canonical transforms, 394 
of a finite matrix, 9 
of an infinite matrix, 188 
of an integral kernel, 188 
of an operator in a function space, 189, 247 
of an operator inN-dimensional space, 12, 

20 
Airy functions 

as a Dirac basis and transform kernel, 374 
as initial conditions for diffusion, 429 
and the linear potential Schri:idinger 

equation, 272 
series expansion of, 454 
in terms of Bessel functions, 454 

Airy transforms, 374 
Amplitude modulation, 114 
Analytic continuation 

of canonical transform parameters, 386, 
388, 393 

of Laplace transform functions, 336 
of Legendre transforms, 376 
of Taylor series, 346 

Autocorrelation 
definition, 115 
of noise, 121 
of periodic functions, 116 
and power spectrum, 117 

Average of a function, 329 

473 

Axioms 
of equivalence relations, 436 
of groups, 14 
of semigroups, 199 
of vector spaces, 4, 140 

Backwave 
absence of, in odd dimensional media, 358 
in two-dimensional elastic media, 367 

Baker-Campbell-Hausdorff relations 
for Bargmann transforms, 410 
from canonical transforms, 409 
for dilatations, 267 
for exponentiated matrices, 24 
and the Weyl commutation relation, 266 

Bargmann, V., 381, 395, 399 
Bargmann space 

and coherent states, 318, 402 
and its collapse to f' (j!) space, 403 
description, 395 
inner product in, 396 
reproducing kernel for, 401 
weight function in, 396 

Barut-Girardello transforms, 405, 416 
Basis (see also Eigenbasis) 

Airy function, 374 
for Bargmann space, 400 
coherent state, 402 
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Basis (cont.) 
complete, for function spaces, 182, 248, 

372 
Dirac's generalized, 183, 373 
dual, 10 
eigen, for the Laplacian, 223 
Fourier, 142, 182, 373, 414 
harmonic oscillator, 314, 400, 414 
Mellin, 346, 373 
normal mode: see Normal modes 
orthonormal, 6 
Taylor, 140 
and its transformations, 9 
for a vector space, 5 

Bessel functions 
asymptotic zeros of, 218, 238 
as coefficients in Laurent series, 449 
definition, 449 
generating functions for, 369, 370, 450 
as Green's functions in the infinite lattice, 

216 
as Hankel transform kernel, 363 
modified: see Modified Bessel function 
normalization constants for, 233, 244 
orthogonality of, 236, 248 
as radial solutions of the wave equation, 

231, 240, 243 
raising and lowering operators for, 451 
recursion relations for, 365, 451 
zeros of, 231, 238, 241, 244, 246, 450 

Bessel inequality, 173 
Bessel series 

and Fourier sine series, 243 
infinite-radius limit for, 238 
of integer order, 235 
of real order, 243 

Bilinear product, 102, 354 
Bochner's theorem: see Positive definite 
Bochner transforms: see Hankel transforms 
Boundary conditions 

for canonical transforms, 383 
and Cartesian coordinates, 223 
for complex plane integration, 396 
invariance under transformations, 227 
moving, for the diffusion equation, 433 
moving, for quadratic differential 

equations, 443 
and orthogonal coordinates, 250 
periodic, 197, 213, 227 
in polar coordinates, 231, 238, 240 
for self-adjointness of the Laplacian, 222 
and zeros offunction and derivative, 201, 

202, 213 

Brillouin diagram 
for diatomic lattices, 84 
for farther-neighbor interaction lattices, 

73 
for infinite lattices, 215, 220 
for molecular lattices, 76, 79 
for oscillation frequencies, 63 
for oscillation periods, 63 
for velocities, 68 
for wavelengths, 64 

Bromwich contour, 338 

e; function spaces, 263, 269, 274, 277, 314, 
375 

Canonical transforms 
complex linear 

Bargmann case of, 399 
collapse of, to Moshinsky-Quesne 

transforms, 403 
composition of, 398 
inner product for, 394 
inversion of, 398 
weight function for, 396 

complex radial, 405 
geometric, 389, 422 
Heisenberg-Weyl, 418 
as hyperdifferential operators, 405 
inhomogeneous linear, 419 
N-dimensional symplectic, 405 
real linear 

composition of, 385 
definition, 382 
geometric, 389 
identity for, 388 
inversion of, 384 
kernel for, 383 
one-parameter subgroups of, 391 

Canonically conjugate 
classical o bservables, 89 
quantum operators, 272, 382 

Casimir operator, 313 
Cauchy representation of a function, 300 
Cauchy sequence, 182 
Cauchy theorem on complex integration, 

144, 340 
Causal functions 

definition, 294, 338 
Fourier transform of, 294 
Laplace transform of, 338 
Paley-Wiener theorems for, 294 
properties of anticausal functions, 296 
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Causality (see also Causal functions, Filters) 
approximate, in infinite lattices, 216 
of the damped driven oscillator solutions, 

292 
in filtering of signals, 302 
in N-dimensional elastic media, 358, 367 
in one-dimensional elastic media, 206 
and poles in the complex plane, 290 

Characteristic equation, 33 
Characteristic polynomial, 34 
Chebyshev polynomials, 41 
Christoffel-Darboux formula: see Three-

term recurrence relations 
Coherent states 

Barut-Girardello, 416 
as basis for Bargmann space, 402 
definition, 317 
dispersion of, 330 
for the repulsive oscillator, 416 
time evolution under harmonic oscillator, 

415 
Commutators 

and canonical transforms, 382 
of canonically conjugate operators, 272 
distributivity of, 273 
Leibnitz rule for, 273 
of om and IP'n., 273, 350 
of raising and lowering operators, 309, 

312, 313, 393 
and uncertainty relations, 332 

Complete generalized bases, 190 
Complete spaces, 182 
Complex conjugation 

of functions, 160, 268, 318 
of vector coordinates, 17 

Computational complexity 
of the fast Fourier transform algorithm, 

127 
of the longhand Fourier transform, 125 

Convergence 
componentwise (weak), 181 
9f Fourier integrals, 256 
of Fourier series, 148, 164, 172 
of function sequences, 181 
in the norm (strong), 181 
pointwise, 146, 181 
of polynomial series, 315 
of Taylor series, 141 
uniform, 146, 149, 181 

Convolution 
in canonical transforms, 392 
in diffusion processes, 198, 359 
of Dirac 8s, 284 

Index 475 

Convolution (cont.) 
in elastic media, 215, 356 
through the fast Fourier transform, 129 
and a filter's transfer function, 302 
in finite-dimensional spaces, 103 
in Fourier series, 168, 198 
in Fourier transforms, 268 
and the Green's function of a system, 286, 

288, 356 
in Hankel transforms, 371 
in Laplace transforms, 342 
in Mellin transforms, 371 
transform, 378 

Cooley, J. W., 125, 128 
Coordinates 

Cartesian, 222 
equivalent systems of, 431, 433, 441 
of a finite-dimensional vector, 7 
of a function, I 43, 182, 184 
hyperspherical, 362 
of plane and space, 250 
polar, 230 
separating: see Separating coordinates 
spherical, 357 

Correlation, 114 
Coupling coefficients 

in canonical transforms, 392 
in finite-dimensional spaces, 102 
in Fourier transforms, 283 

Creation and annihilation operators: see 
Raising and lowering operators 

Cut functions (see also Causal functions, 
Causality) 

as causal solutions, 290 
and the cutting process, 297 
Fourier transforms and analyticity of, 296 
in Laplace transforms, 338 
through the rectangle function, 270 

Cyclic group, 30 
Cylindrical functions: see Airy, Bessel, 

Macdonald, Modified Bessel, 
Neumann, Struve functions 

Damping (see also Diffusion, Dissipation) 
of "massless" oscillator, 49 
in one-dimensional elastic medium, 213 
of simple lattice, 55, 70 
of single oscillator, 44, 288, 341 

Definite symmetry (see also Invariance) 
under inversions, 159 
under rotations, 354, 369 
under translations, 159 
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Degeneracy 
accidental, 225, 227 
in circular membrane modes, 234 
of matrix eigenvalues, 34 
in rectangular membrane, 224, 227 
removal of, 39, 224 

Diagonalization 
of canonical transform matrices, 415 
of infinite matrices, 186 
of 2 X 2 matrices, 40 
of self-adjoint matrices, 34, 36 
of unitary matrices, 3 7 
of A, 36, 41 

Differentiation 
of Bargmann transforms, 399 
of discontinuous functions, 176 
of Fourier integrals, 270, 273 
of Fourier series, 163 
fractional, 163 
of harmonic oscillator expansions, 319 
of the H eaviside step function, 282 
of matrix functions, 26 
operator, 271 

Diffusion (see also Heat, Gauss-Weierstrass 
transform) 

and canonical transforms, 422 
equation, similarity group of, 426 
equation, manifest and hidden symme-

tries of, 423 
in N-dimensional space, 359 
in a ring, 196 

Dihedral group 
definition, 26 
multiplication table, 30 
and symmetry of the lattice equation of 

motion, 55 
Dimension of a vector space, 4, 139 
Dini series, 238 
Dirac, P. A. M., 144 
Dirac 8 

in Bessel series, 23 7 
in canonical transforms 

and coherent states, 415 
and Gaussian time evolution, 411 
and geometric transforms, 389 
and the inversion formula, 398 
as a limit of imaginary Gaussians, 388 
as reproducing kernel in Bargmann space, 

401 
as derivative of the Heaviside step 

function, 282 
in Fourier states 

derivatives of, 179 

Dirac 8 (cont.) 
in Fourier states (cont.) 

divergent series representation of, 175 
as a limit from finite-dimensional 

spaces, 133, 135 
as a limit of function sequences, 174 
symbol, 175 

in Fourier transforms 
Cauchy representation of, 300 
derivatives of, 281 
divergent integral representation of, 282 
of function argument, 284, 366 
and inhomogeneous differential 

equations, 286 
as a limit of function sequences, 280 
and principal value of an integral, 299 
symbol, 280 

in the heat equation, 198 
and the Mellin transform, 346 
and the Sturm-Liouville problem, 372 
in the wave equation, 205, 357, 365 

Dirac generalized basis, 183, 190, 372, 392 
Dirichlet conditions, 132, 145, 167 
Dirichlet kernel, 147, 174 
Dispersion-free lattices, 218 
Dispersion (of a function) 

and canonical transforms, 392 
of coherent states, 330 
definition of, 330 
functions of minimum, 330 
of harmonic oscillator wave functions, 

330 
Dispersion (of waves) 

in a finite lattice, 69 
in an infinite lattice, 215, 219 
linear approximation for, 70 

Dispersion relations 
of causal functions, 30 I 
with subtractions, 306 

Dissipation 
of energy in a lattice, 87, 94 
operator, 51 

Divergent integrals: see Dirac 8 in Fourier 
transforms 

Divergent series: see Dirac 8 in Fourier series 
Domains 

of definition of complex canonical 
transforms, 405 

of definition of Laplace transform 
functions, 335, 337 

of hyperdifferential and integral 
operators, 277 

of self-adjoint and unitary operators, 189 
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Dual basis, 10 
Dual function space, 181 

Eigenbasis 
of the dilatation operator, 373 
the Dirac basis as, 190 
the Fourier basis as, 190 
of the free-particle Schrodinger 

Hamiltonian, 414, 429, 435 
of the harmonic oscillator Hamiltonian, 

312, 414, 431 
of the Laplacian 

on an annulus, 244 
on a rectangular region, 223, 225, 373 
on a sector, 240 
on the unit disk, 232 

of the lattice interaction operator, 52 
of the linear potential Schrodinger 

Hamiltonian, 374, 429 
of an operator, 189, 247, 372 
of operators with degenerate spectra, 38 
of quadratic differential operators, 414 
of the repulsive oscillator Hamiltonian, 

373, 414 
of the second-difference matrix, 39 
of self-adjoint matrices, 34 
of three-dimensional rotation matrices, 37 
of two-dimensional general matrices, 40 

Eigenfunctions: see Eigenvectors 
Eigenvalues 

of the dilatation operator, 373 
of finite matrices, 33 
of the Fourier matrix, 38 
of functions of matrices, 36 
of the harmonic oscillator Hamiltonian, 

312 
of the Laplacian 

on an annulus, 244 
on Cartesian coordinate regions, 223, 

225, 373 
on a disk, 232, 238 
on a sector, 240 

of the linear potential Schrodinger 
Hamiltonian, 374 

of 2 X 2 matrices, 40 
multiple, 34 
of an operator, 189, 247, 372 
of quadratic differential operators, 414, 

435 
of the second-difference matrix, 36 

Eigenvectors 
of the dihedral operators, 39, 40 
of the dilatation operator, 373 

Index 477 

Eigenvectors (cont.) 
of finite matrices, 33 
of the Fourier transform, 308 
generalized, 189 
of the harmonic oscillator Hamiltonian, 

312, 414 
of the Laplacian 

on an annulus, 244 
on Cartesian coordinate regions, 223, 

225, 373, 414 
on a disk, 232 
on a sector, 240 

of the linear potential Hamiltonian, 374 
of the lowering operator, 317 
of 2 X 2 matrices, 41 
of an operator, 189, 247, 372 
of a quadratic differential operator, 435 
of the repulsive oscillator Hamiltonian, 

321, 373, 414 
of three-dimensional rotations, 37 

Elastic medium: see Wave equation 
Electric circuit, 44 
Energy 

conservation of, 86, 95 
in a diatomic lattice, 88 
in a finite general lattice, 86, 95 
as a metric, 98 
in normal modes, 87 
operator, 95 
in the quantum oscillator, 312 
as a sesquilinear form, 95 
in a string discontinuity, 213 
in a vibrating string, 211 

Energy-time uncertainty relation, 332 
_Equivalent width, 172, 331 
Euler integral, 445 
Exponential operator, 274 
Exponentiation (see also Hyperdifferential 

operators) 
of the differentiation operator, 180, 189, 

274, 316 
of the Fokker-Planck operator, 438 
of the generator 

of diffusion, 25, 200, 276 
of dilatations, 275 
of the lattice equation of motion, 90 
of the wave equation, 210 

of the Hermite differential operator, 433 
of the linear potential Schrodinger 

Hamiltonian, 420 
of matrices, 24, 25, 26 
of quadratic differential operators, 406, 

408 
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Exponentiation (cont.) 
of the quantum harmonic oscillator 

Hamiltonian, 320 
of the second-difference operator, 25 

Factorial function, 445 
Fast Fourier transform algorithm 

binary bit inversion, 128 
convolution through, 129 
description, I 25 
FORTRAN program, 129 
mergings, 127 
regression, I 27 

Filters 
absorptive and dispersive properties, 305 
averaging and differencer, 109, 121, 306 
band-absorbing, 305 
causal, 301 
delay, 108 
finite memory, 302 
high-pass, 79, 108 
low-pass, 79, 108 
and noise, 122, 124 
series and parallel connection of, 109 
transfer function of, 108, 302 
and waveforms, 108 
window, 109 

Finite Fourier transform 
of the coordinates of a vector, I 6 
definition, I 6 
of dihedral matrices, 3 I 
of the farther-neighbor interaction lattice, 

73 
on finding the matrix for, 41 
matrix, 16 
of the molecular lattice, 75 
powers of, 17 
of projection operators, 23 
of the second-difference matrix, 21 
of the simple lattice equations of motion, 

53 
Fokker-Planck equation, 438, 440 
Fourier integral theorem, 256 
Fourier integral transform 

and the Airy function, 272 
of anticausal functions, 296 
and asymptotic behavior, 294 
in Bargmann space, 400 
as a canonical transform, 391 
and causal filters, 30 I 
of causal functions, 290, 293 

Fourier integral transform (con/.) 
convolution and product in, 268 
definition, 134, 194, 256 
and dilatation, 267 
and differentiation, 270 
of functions with finite support, 296 
of the Gaussian bell function, 261 
and Green's functions, 276, 287 
and growth, 273 
of harmonic oscillator wave functions, 3 I I 
as a hyperdifferential operator, 320 
and integration, 273 
and linear combination, 265 
N-dimensional 

definition, 352 
linear transformations in, 353 
of spherically symmetric functions, 361 

of power functions, 324 
powers of, 265 
of the rectangle function, 257 
of the repulsive oscillator wave functions, 

327 
self-reciprocal functions under, 308 
self-reciprocal operators under, 308, 312 
and the simple harmonic oscillator, 288 
square root of, 328, 392 
and the time evolution of Gaussians, 411 
and translation, 266 
and uncertainty relations, 328 

Fourier series 
and complex conjugation, 158 
and convergence, 164 
definition, 131, 145 
and differentiation, 163 
and dilatation, 158 
divergent, I 75 
generalized, 223, 248, 314 (see also Series) 
and integration, 162 
and inversion, 157 
and Jacobi 0-functions, 170 
moduli and phase shifts of, 154 
and operators, I 87 
for any period, 191 
of the polygonal function, I 77 
of the rectangle function, I 50 
sine and cosine, 154, 192 
of the square wave, 156 
and translation, I 55 
of the triangle function, I 52 
truncation, I 72 

Fractional derivatives, I 63 
Free fall: see Linear potential 
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Frequency lattice 
for the annular membrane, 245 
for the circular membrane, 234 
for the rectangular membrane, 225 
for the sectorial membrane, 241 

Friction, 44 
Functions (see also under specific properties 

or names) 
analytic, as boundary values, 298 
analytic continuation of, 336 
of bounded total variation, 147, 256 
Cauchy representation of, 300 
causal: see Causal functions 
derivatives of discontinuous, I 76 

entire analytic, 296, 394 
equivalent width of, 172, 331 
existence bands for, 337 
generalized, 175, 181, 264, 280 
integrable: see ~ 1, ~ 2 functions 
of matrices 

convergence of, 24 
differentiation of, 26 

moments of, 329 
piecewise continuous, 256, 259 
piecewise differentiable, 146 
sequences, convergence of, 181 

test, 134, I 7 5 
Fundamental solutions 

for the heat diffusion in a ring, 198 
for the infinite lattice, 216 
for the N-dimensional diffusive medium, 

359 
for the simple finite lattice, 56 
for the three-dimensional elastic medium, 

356 
for the vibrating string, 205 

Gamma function 
Euler's integral for, 445 
Gauss and reflection formulas for, 446 
and Mellin transform, 348 
numerical computation of, 446 
poles and residues of, 445 

Galilean transformations, 426, 427, 432 
Gaussian function 

and coherent states, 3 I 7 
convolution of two, 270 
of decreasing width, 280, 388 
definition, 261 
discrete, 170 
Fourier transform of, 261 

Index 479 

Gaussian function (cont.) 
Fourier transform, with imaginary width, 

324 
as Green's function for diffusion, 359 
growth of, 334, 394 
as integral kernel, 375, 378, 390, 403 
as minimum dispersion function, 331 
operator, 276, 279, 287, 403 (see also 

Diffusion) 
second moment of, 262 
self-reciprocity of, 308 
time evolution under quantum potentials 

of, 411 
width of, 328 

Gauss-Weierstrass transform, 276,375,390, 
402, 428 (see also Heat, Diffusion) 

Gegenbauer polynomials, 249, 315 
Generating function 

for Bessel functions, 369, 370, 449 
canonical transform kernels as, 401, 414 
for harmonic oscillator wave functions, 

314 
Generator 

of canonical transforms, 406 
of diffusion, 200, 276, 422, 425 
of Fokker-Planck time evolution, 438 
of Heisenberg-Weyl transformations, 418 
of SL(2,9!.) transformations, 408 
of the similarity group of the diffusion 

equation, 422 
of time evolution in elastic media, 210 
of time evolution in a lattice, 90 
of time evolution in quantum systems, 

410, 439 
of translations, 189, 274, 316, 418 
of unitary matrices, 74 

Geometric transform, 389, 422, 435, 439 
Gibbs phenomenon, 150, 167 
Green's function 

for the diffusion equation, I 98 
for elastic-diffusive media, 355, 367, 376 

and Fourier transformation, 287 
for a general operator, 287 
for the infinite lattice, 215 
for the N-dimensional diffusion equation, 

359 
for theN-dimensional elastic medium, 

363 
for quantum mechanical quadratic 

Hamiltonians, 410, 439 
for the simple lattice, 54 
for the single oscillator, 47, 289, 342 
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Green's function (cont.) 
for a three-dimensional elastic medium, 

357 
for a two-dimensional elastic medium, 

366 
for the wave equation in one dimension, 

204 
Green's operator 

for the damped lattice, 94 
for diatomic lattices, 93 
for diffusion, 199, 422 
group properties of, 92 
for inhomogeneous differential equations, 

287, 375 
in phase space, 91 
for quantum mechanical systems, 410,439 
for the simple lattice, 54, 57 
for the wave equation, 210 

Ground state of the harmonic oscillator (see 
also Gaussian function) 

canonical transform of, 397 
and coherent states, 317 
definition, 309 

Group 
abelian, 92 
axioms of, 14 
cyclic, 30 
dihedral, 26 
of dilatations, 275, 354, 390, 406, 425 
of elliptic transformations, 391, 407, 426 
of Galilean transformations, 426 
of geometric transformations, 422, 427 
Heisenberg-Weyl, 418 
of hyperbolic transformations, 391, 407, 

426 
of inhomogeneous linear transformations, 

420, 435 
of linear transformations (free-fall), 426, 

429 
of linear transformations in space, 353 
of orthogonal transformations, 363, 369 
of permutations, 15 
of projective transformations, 426 
SL(2,C:), 408 
SL(2,3t ), 390 
of time evolution: see Time evolution, 

Green's function, Green's operator 
of translations and inversions, 155, 157, 

274, 315, 423 
two-dimensional orthogonal, 234, 245, 

369 
of unitary matrices, 13 

Growth 
definition, of a function, 334 
of functions in e, 397 

Hankel transforms 
convolution in, 371 
and definite rotational symmetry, 369 
as limit of Bessel series, 238 
normalized, 370 
recursion relations, 364 
reduction of N-dimensional Fourier 

transform to, 363 
Hanning function, 113 
Harmonic oscillator 

and coherent states, 317 
expansions, 314, 318, 401 
raising and lowering operators for the, 

308, 313 
Schrodinger equation, 312 
and self-reciprocity under Fourier 

transformation, 308, 391 
wave functions 

addition formula, 320 
in Bargmann space, 399 
canonical transforms of, 397, 414 
evolution under diffusion, 431 
explicit form, 311 
generating function for, 314, 401 
orthonormality of, 309, 400 
width, 320, 330 

Heat 
capacity, 197 
conservation, 25, 199 
in an N-dimensional diffusive medium, 

359 
diffusion in an infinite rod, 359, 422 
diffusion in a ring, 171, 195 
diffusion in a rod with cold walls, 20 I 

Heat polynomials, 432 
Heaviside step function, 205, 281 
Heisenberg commutation relation, 272, 382 
Heisenberg uncertainty relation, 329, 392 

(see also Uncertainty relations) 
Heisenberg-Weyl transform, 418 
Helmholtz equation, 250 
Hermite polynomials 

addition formula for, 319 
in the diffusion equation, 433 
explicit expressions for, 319 
hyperdifferential formula for, 319, 410 
table of, 311 
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Hermitian 
finite matrices, 20 
infinite matrices, 188 
integral kernels, 188 
operators, 188, 222, 247, 271 

Hilbert space, 182, 189, 248, 264, 372, 399 

Hilbert transforms, 376 
Holder's inequality, 261 
Homogeneous medium, 361 
Hyperdifferential operators 

for an addition formula, 319 
for Bargmann's transform, 409 
of convolution, 288 
of diffusion, 200, 276 
of dilatation, 275, 408 
and the Dirac 15, 180 
of an evolution equation, 287, 410 
of Fourier transformation, 320 
generating canonical transformations, 406 

of Hermite polynomials, 319 
and lattice time evolution, 90 
of smoothing, 21 I 
of translations, 198, 266, 274 
of wave equation evolution, 210 

Inequality 
Bessel, 173 
convolution, I 03, 172, 269 
Holder's, 261 
Minkowski, 261 
Schwartz, 7, 142, 261, 330 
triangle, 8, 261 

Inertia operator 
in diatomic lattice, 82 
in simple lattice, 50 

Inhomogeneous differential equations 
and the Dirac 15, 287 
and the Green's function, 276, 287 
and the Laplace transform, 341 
and the reduced equation, 286 

Inhomogeneous linear canonical 
transforms, 419, 434 

Inner product 
Bargmann's, 395, 399 
for canonical transforms, 395 
for finite-dimensional spaces, 6 
for function spaces 

on an annulus, 243 
on an interval, 141, 247 
on N-dimensional space, 353 

on the real line, 256, 372 

Inner product (cont.) 
for function spaces (cont.) 

on a rectangle, 227 

Index 481 

on a region in N-space, 222 
on a sector, 240 
on the unit disk, 230 

Integral kernel (see also Green's function) 
for canonical transforms, 383 
for convolution transforms, 378 
Gaussian, 200, 375 
representing an operator, 186, 288 
solving an inhomogeneous differential 

equation, 286 
Integral transform 

Airy, 374 
Bargmann, 399 
Barut-Girardello, 405 
bilateral Laplace, 334, 403 
bil<iteral Mellin, 345 
Bochner, 364 
canonical 

complex linear, 393 
complex radial, 405 
inhomogeneous, 420 
real linear, 381 

convolution, 378 
Fourier, 134, 194, 256, 352 
Gauss-Weierstrass, 375, 402 
geometric, 389, 422 
Hankel, 239, 370 
Hankel-Bochner, 364 
Hilbert, 376 
Kontorovich-Lebedev, 371 
Laplace: see Integral transform, 

unilateral, bilateral 
limit of the identity, 388 
Mehler-Fok, 376 
Meijer K, 371 
Mellin: see Integral transform, unilateral, 

bilateral, positive, negative 
Moshinsky-Quesne, 381, 393 
negative Mellin, 345 
Neumann, 371 
positive Mellin, 344 
Sommerfeld-Watson, 376 
Stieltjes, 377 
unilateral Laplace, 337 
unilateral Mellin, 347 
Weber, 371 

Integration 
in Fourier series, 162 
in Fourier transforms, 273 
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482 Index 

Interaction operator 
eigen basis, 52 
for farther-neighbor interaction lattice, 72 
for the finite lattice, 50 
for the infinite lattice, 214 
for the molecular lattice, 214 
for the simple lattice, 52 

Invariance 
of boundaries under similarity 

transformations, 428 
under Fourier transformation, 308 
of functions 

under complex conjugation, 160 
under inversion, 159, 193, 206, 216 
under plane rotation, 234 
under translation, 159, 198, 206, 216 

of the lattice equations of motion, 28 
of multiple-root eigenspaces, 34 
of simple lattice, 55 
under space rotations, 354, 361 
of 0. under the dihedral group, 32 

Inverse-square law for illumination, 358 
Inversions 

and degeneracy removal, 39 
of finite lattices, 30, 32, 55 
for Fourier series, 157 
for Fourier transforms, 265 
matrices representing, 17 
for N-dimensional Fourier transforms, 

353 
for oscillator expansions, 318 

Isometric operators, I 82, 188, 264 
Isotropic medium, 361 

Jacobi canonical form, 38 
Jacobi polynomials, 249, 315 
Jacobi 8-function 

definition, 170 
and the diffusion equation, 198 
and the Dirac lJ, 174 
and hyperdifferential operators, 180 
smoothing applications, 171 

Jacobian, 353, 363 

Kapteyn series, 246 
Kontorovich-Lebedev transform, 371 
Kramer, P., 393, 405 

~ 1-spaces of functions 
on a finite interval, 147 
on the real line, 264, 269, 273 

f 2 -spaces of functions 
on a compact region, 222, 230, 240, 243 
on the complex plane: see Bargmann space 
on a finite interval, 142, 181, 182, 189,235, 

247 
on the real line, 264, 273, 277, 314, 346, 

372, 373, 375, 384 
Lag, 115 
Laguerre polynomials, 249, 315 
Lanczos a-factors, 169 
Laplace transform 

bilateral, 334 
and Bromwich contours, 338 
as a canonical transform, 403 
convolution, 342 
differentiation, 341 
unilateral, 337 

Laplacian 
in the heat equation, 197 
in N-dimensional Cartesian coordinates, 

222 
in N-dimensional spherical coordinates, 

368 
in the one-dimensional wave equation, 20 I 
·in polar coordinates, 230 
as self-adjoint operator, 203 
spectrum for generalized bases on !liN, 

373 
spectrum in R, 222, 224, 241, 244 

Lattice 
with defect, 85 
diatomic, 82 
dihedral symmetry of, 27, 55 
equation of motion, 51 
with farther-neighbor interaction, 71 
with fixed ends, 70 
frequency, 266 
fundamental solutions, 56 
infinite, 214 
molecular, 74 
uncoupling, 53 

Laurent series, 449 
Leakage, 112 
Legendre polynomials, 142, 249, 250, 315 
Limit 

of annular to disk functions, 245 
of Bessel series to Hankel transforms, 

238 
of complex to real canonical transforms, 

403 
of finite Fourier transform 

to Fourier integrals, 134 
to Fourier series, 131 
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Limit (cont.) 
of Fourier series to Fourier transforms, 

193 
of real canonical linear transforms to the 

identity transform, 388 
Linear combination 

of filtered signals, I 07 
of functions, 140, !55, 265 
of operators, II 
of vectors, 4 

Linear independence 
of conserved quantities in a lattice, 96 
of functions, 140 
of vectors, 4 

Linear potential 
eigenfunctions under diffusion, 429 
evolution transform, 420 
Schriidinger equation, 272, 374 

Lommel function, 371 
Longitudinal waves in lattices, 50 
Lowering operator: see Raising and lowering 

operators 

Macdonald functions, 371, 453 
Manifest and hidden symmetries, 423, 426, 

429 
Mass defect in a lattice, 85 
Mathieu functions, 250 
Matrix 

adjoint of, 9 
"continuous", 187 
differentiation of, 186, 316 
Fourier, 16, 184 
hermitian, 20, 188 
inversion, 17, 186, 187 
multiplication and Baker-Campbell-

Hausdorff relations, 390 
normal, 38 
permutation, 15 
representing a canonical transform, 382 
representing an inhomogeneous canonical 

transform, 435 
representing an operator, II, 186, 316 
second-difference, 21 
translation, 186, 187, 316 

Meijer K transform, 371 
Mellin transform 

applications, 351 
bilateral, 345 
differentiation, 349 
divergence of, 349 
positive and negative, 345 

Index 483 

Mellin transform (cont.) 
as a Sturm-Liouville problem, 373 
translations, 350 
unilateral, 34 7 

Method of images 
in the conducting rod with fixed cold ends, 

201 
in the conducting rod with moving cold 

ends, 433 
for quadratic differential equations, 443 
for the vibrating string, 205, 207 

Minkowski inequality, 261 
Minkowski space-time, 436 
Modified Bessel function, 367, 371, 453 
Moments of a function, 329 
Momentum 

constants of motion resembling, 97 
in phase space, 89 
quantum mechanical operator of, 271, 

332, 382 
Moshinsky, M., 381, 384, 393, 405 
Multiplier function, 423 

Neumann function 
definition and properties, 451 
as an integral kernel, 246, 371 
in radial solutions of the wave equation, 

231, 243, 245, 246 
Neumann series, 246, 248 
Neumann transforms, 371 
Nodes 

in a circular membrane, 234 
in degenerate eigenvalue subspaces, 227 
in a rectangular membrane, 225 
in a string, 209 

Noise 
autocorrelation, 121 
constant-density, 118 
filtering, 122 
Gaussian-density, 119 
white, 121 

Norm 
approximation in the, 173, 264 
convergence in the, 181, 264 
for finite-dimensional vectors, 7 
for functions, 141, 261 
of a Gaussian, 264 

Normal modes 
in an annular membrane, 244 
in a circular membrane, 233 
for a diatomic lattice, 84 
for the diffusion equation, 427 



www.manaraa.com

484 Index 

Normal modes (cont.) 

for an infinite lattice, 218 
for a molecular lattice, 79 
quantum-mechanical, 413 
in a rectangular membrane, 225 
for a simple lattice, 58 
in a vibrating string, 208 

Operator 
adjoint of, 20, 189, 247, 271 
canonical transform, 382 
function, 190 
hermitian, 188 
isometric, 188 
linear, 10, 107, !55, 185, 382 
raising and lowering: see Raising and 

lowering operators 
second-order differential, 408 
self-adjoint, 20, 189, 247, 271 
unitary, 26, 37, 189, 264, 266 

Operators 
composition of, 12, 109 
convolution of, 191, 200, 288 
linear combination of, II, I 09 

Optical and acoustic modes 
of a diatomic lattice, 84 
of a molecular lattice, 78 

Orbit, 434, 436, 441 
Order of a function, 334 
Orthogonal 

matrices, 354 
polynomials, 249 
two-dimensional transformations, !57, 

234 
vectors, 7 

Orthogonality properties 
in the Dirac sense, 183, 372 
of the harmonic oscillator wave functions, 

309 
of the linear potential wave functions, 373 
of operator eigenbases, 34, 37, 190, 247 
of the power functions, 346, 400 
of quadratic operator eigenfunctions, 414 
of the repulsive oscillator wave functions, 

328, 347 
Oscillation frequency 

Brillouin diagram for lattices, 59 
of diatomic lattices, 83 
effective, 44, 288, 342 
of the infinite lattice, 215, 218, 220 
of the membrane 

annular, 244 

Oscillation frequency (cont.) 

of the membrane (cont.) 
circular, 233 
rectangular, 225 
sectorial, 241 

of the molecular lattice, 78 
of the farther-neighbor interaction lattice, 

73 
of the quantum harmonic oscillator, 411 
of the single damped oscillator, 46 
of the vibrating string, 209 

Oscillator 
critical solution, 48 
damped, driven, 288, 341 
harmonic, wave functions, 311, 330 
oscillatory solution, 47 
overdamped solution, 48 
quantum, operator, 312 
quantum repulsive, 321 
repulsive, wave functions, 322, 327, 347 
single, equation of motion, 44 
"springless", 49, 53 

Parabolic cylinder functions, 250, 322 
Parseval identity 

for Bessel series, 235 
for complex canonical transforms, 394, 

397 
for finite-dimensional spaces, 13 
for Fourier integral transforms, 134, 256, 

261 
for Fourier series, 132, 143, 149, 192 
for general integral transforms, 373 
for general orthogonal series, 248 
for Hankel-Bochner transforms, 364 
for harmonic oscillator expansions, 314 
for Laplace transforms, 334, 338 
for Mellin transforms, 345, 347 
for N-dimensional Fourier transforms, 

353 
for real canonical transforms, 384 
for series with annular functions, 246 
for series of functions on a region, 223 

Period 
of a circular membrane, 234 
of a finite lattice, 63 
of the quantum oscillator, 411 
of a rectangular membrane, 226 
of a vibrating string, 209 

Permutations 
composition of, 15 
cycles in, 15 
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Permutations (cant.) 

and degeneracy, 224 
and the dihedral group, 27 
group of, 14 
inversion of, 15 
matrix representation of, 15 
as rotations and inversions, 16, 353 

Phase space 
and constants of motion, 96 
in damped systems, 94 
of the lattice, 89 
quantum mechanical, 332, 382 
of the single harmonic oscillator, 89 
and time evolution, 91, 210 
of the vibrating string, 210 

Phasor, 376 
Pochhammer symbol, 455 
Polar decomposition of operators, 33 
Polarization identity, 8 
Polarization vectors, 37 
Polygonal function, 177 
Polynomials (see also under their specific 

names) 
characteristic, 34 
heat, 432 
spaces of, 140 
trigonometric, 132, 145, 164 

Positive definite 
functions, 279 
series, 152 
vector components, 20 

Power spectrum 
and autocorrelation, 117 
definition, I 06 
in white noise, 121 

Principal value of an integral, 299, 305 
Product of vectors 

in finite-dimensional spaces, 102 
in function spaces, 168, 268, 344, 351 

Projection operators, 22, 83 
Projective transformations, 426, 427, 432 

R-separability, 430, 432, 441 
Radial functions 

for the annular membrane, 244 
for the circular membrane, 231 
for the sectorial membrane, 240 

Raising and lowering operators 
under the Bargmann transform, 399 
commutation relations of, 309 
eigenfunctions of, 317 
Fok's representation for, 393 

Index 485 

Raising and lowering operators (cont.) 

for the harmonic oscillator wave 
functions, 308, 311 

of second order for the harmonic 
oscillator, 312, 313 

Ray representation, 387 
Reality 

of functions: see Complex conjugation 
of the lattice solutions, 55 

of the spectrum of an operator, 34 
of the A-eigenvectors, 39 

Reciprocity principle 
in diffusion phenomena, 198 
in lattices, 55, 216 
in wave phenomena, 206, 358 

Rectangle function 
Cauchy representation, 300 
and the Dirac 5, 174, 280 
Fourier series for, 150 
Fourier transform of, 257 
in the Green's function of elastic media, 

205 
on an interval, !50 
and noncausal filters, 304 
on !R, 257 
use in smoothing, 169 
width, 328, 331 

References 
on Airy functions, 455 
on Baker-Campbell-Hausdorff formulas, 

24, 409 
on Bargmann transforms, 393, 399 
on Barut-Girardello coherent states, 405, 

416 
on canonical transformations in quantum 

mechanics, 381, 405 
on causality, 358 
on coherent states, 318, 416 
on communication theory, 114 
on complex canonical transformations, 

393, 405 
on convergence of polynomial series, 249 
on convolution transforms, 378 
on Dini and related Bessel series, 238, 246 
on the Dirichlet conditions, 147 
on the Dirac 5, 184 
on dispersion in the infinite lattice, 218 
on dispersion relations, 307 
on the fast Fourier transform algorithm, 

129 
on Fok's boson calculus, 381, 393 
on Fourier series, 147, 191 
on Fourier transforms, 264, 265 
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486 Index 

References (cant.) 
on functional analysis, 184, 191, 264 
on the gamma function, 447 
on the Gauss-Weierstrass transform, 375, 

403 
on group theory, 14, 428 
on Hankel transforms, 371 
on Hilbert transforms, 377 
on hyperdifferential operators, 191 
on integral transforms with cylindrical 

functions, 371 
on Laplace transforms, 343 
on lattices, 85 
on matrix diagonalization, 38 
on matrix functions, 23 
on Mellin transforms, 351 
on Moshinsky-Quesne transforms, 381 
on operator eigenbases, 251 
on orthogonal polynomials, 249 
on polar decomposition of matrices, 33 
on self-reciprocal functions, 392 
on separation of variables, 428, 430 
on signal detection, 125 
on similarity groups, 428 
on smoothing techniques, 171 
on Sommerfeld-Watson transforms, 376 
on spherical harmonics, 251 
on Stieltjes transforms, 377 
on two- and three-variable expansions, 

250 
on uncertainty relations, 332 
on zeros of the Bessel function, 217, 238, 

246 
Repulsive oscillator 

and the Bargmann transform, 410 
and the diffusion equation, 431 
and the Hilbert transform, 377 
and the Mellin transform, 347, 373 
Schriidinger equation, 321, 373 
wave functions 

completeness, 347, 414 
explicit expression, 322 
Fourier transform of, 327 
orthogonality, 328, 414 

Riemann-Lebesgue lemma, 147, 260 
Rodrigues formula, 249, 311 
Rotations 

as axes permutations, I 6 
dihedral, 29 
of finite lattices, 29 
in N dimensions, 354 
in three dimensions, 37 
unitary transformations as, 13 

Sawtooth function, 260 
Scalar product: see Inner product 
Schliimlich series, 246 
Schriidinger equation 

general, quadratic, 417, 434 
for the harmonic oscillator, 312 
for the linear potential, 272, 374 

for the repulsive oscillator, 321 
and the Sturm-Liouville problem, 249, 

373 
Schwartz inequality, 7, 142, 261, 330 
Second-difference operator 

definition, 21 
diagonalization, 21, 41 
eigenbasis, 39 
in Fourier basis, 21 
in Fourier series, 172 
powers of, 22 
in the simple lattice, 52, 714 
spectrum, 36 

Self-adjoint operators (see also Hermitian 
operators) 

under complex canonical transforms, 394 
in finite-dimensional spaces, 20 
in function spaces, 189, 372 
(JI and IP, 271 

Self-reciprocal functions 
under Bargmann transform, 410 
under Fourier transform, 308, 391 
under Gauss-Weierstrass transform, 392 
under quantum potential evolution, 413 

Semigroup 
of complex canonical transforms, 388, 

394, 405 
definition, 158 
of diffusion operators, 199, 20 I 
of dilatation operators, 158 
similarity, of the diffusion equation, 428 

Separation of variables (see also Normal 
modes) 

in diffusive one-dimensional media, 200, 
417 

for the diffusion equation, general, 428 
for a general quadratic equation, 413, 330 
for the Helmholtz equation, 250 
in the infinite lattice, 219 
in a lattice, 59 
with a modulation factor (R-separability), 

430 
in N-dimensional Cartesian coordinates, 

224 
in N-dimensional spherical coordinates, 

362, 370 
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Separation of variables (cont.) 

in a one-dimensional elastic medium, 209 
in two-dimensional polar coordinates, 

230, 240, 369 
Series 

annular function, 246 
Bessel, 235, 243 
Dini, 238, 248 
Fourier, 131, 145 
harmonic oscillator, 314, 400 
of higher transcendental functions, 250 
Kapteyn, 246 
Neumann, 246, 248 
of orthogonal polynomials, 249 
Schliimlich, 246 
Taylor, 140, 246, 400 

Sesquilinear form: see Inner product 
Side-lobes, 112 
Signals 

causal, 301 
detection and noise, 121 
finite, 103 
unit pulse, I 07, 302 
waveform, 108 

Similarity group, 426, 428, 439 
Similarity solutions, 429, 434, 440 
Smoothing (see also Diffusion, Gaussian 

operator) 
and approximation, 172 
of the Gibbs phenomenon, 167 
by Jacobi IJ-functions, 170 
by Lanczos a-factors, 169 
operator in elastic media, 211 
through the rectangle function, 169, 269 

Sonine discontinuous integral, 367 
Source function 

in constant-coefficient differential 
equations, 276 

in diffusive wave equations, 355 
Spectral basis: see Eigenbasis 
Spectrum 

of the dilatation operator, 373 
of the Fourier matrix, 38 
of the Fourier operator, 308 
of the harmonic oscillator Hamiltonian, 

312 
of the Laplacian operator, 223, 224, 231, 

241, 244 
of the linear potential Hamiltonian, 373 
of the lowering operator, 317 
point and continuous, 189 
of the repulsive oscillator Hamiltonian, 

321, 373 

Index 487 

Spectrum (cont.) 

of the second-difference matrix, 36 
of self-adjoint matrices, 34 
of self-adjoint operators, 189, 247, 372 
of unitary matrices, 37 

Speech analysis, 114 
Sphere in N dimensions, 363 
Spherical harmonics, 251, 370 
Square-integrability (see also il2-spaces of 

functions) 
on the complex plane, 395 
and convergence of Fourier series, 164, 

166 
and function spaces on an interval, 142, 

181, 247 
and function spaces over Jt, 264 
and uncertainty relations, 330 

Square wave 
convergence of Fourier series, 165 
derivatives of, 176 
Fourier series, 156 
in a vibrating string, 208 

Standing waves: see Normal modes 
Stationary solution 

to the diffusive-wave equation, 356 
to a driven oscillator, 292, 342 

Stieltjes transform, 377 
Stopping band, 79 
Struve function, 371 
Sturm-Liouville problem 

on a finite interval, 247 
on the real line, 372 

Subtractions, 306 
Support of a function, 293 

Taylor expansion 
in Bargmann space, 400 
continuous analogue of, 344 
of the diffusion operator, 200, 276, 316 
of the dilatation operator, 275 
of the Dirac 8, 180, 287 
of the Fourier operator, 320 
and lattice time evolution, 90 
and local properties of functions, 144 
of polynomial function spaces, 140 
of the repulsive oscillator wave function, 

322 
of the translation operator, 189, 274, 316 
of the wave evolution operator, 211 

Theta function: see Jacobi IJ-function 
Three-term recurrence relation 

for Bessel functions, 451 



www.manaraa.com

488 Index 

Three-term recurrence relation (cont.) 
for Chebyshev polynomials, 41 
for the harmonic oscillator wave 

functions, 319 
Time evolution (see also Green's function, 

Green's operator) 
of circular membrane, 233 
in diffusion phenomena, 199 
of the driven, damped oscillator, 288, 341 
in elastic-diffusive media, 365 
in elastic media, 210, 356 
under Fokker-Planck evolution, 438 
of the general lattice, 90 
group properties of, in the lattice, 92 
group properties of, in the wave equation, 

211 
in the infinite lattice, 216 
in quadratic differential equations, 410, 

439 
of quantum eigenfunctions, 413 
of the rectangular membrane, 225 
semigroup properties of, under diffusion, 

199, 359, 422 
Transformation (see also Integral 

transforms and names of specific 
transformations) 

active, 10 
of axes, 33 
of bases, 9 
Fourier, 16 
geometric canonical 389, 422 
passive, 9 
unitary, 13 

Transient solution 
to a damped oscillator equation, 292, 342 
to the diffusive wave equation, 355 

Translation operator (see also Rotations) 
in canonical transforms, 418 
in Fourier integral transforms, 266 
in Fourier series, 155 
in harmonic oscillator expansions, 315 
as an infinite matrix, 186, 316 
as an integral kernel, 187, 288 
in Mellin transforms, 350 

Transpositions, 15 
Transverse oscillations 

in lattices, 52 
in single oscillator, 45, 48 

Traveling waves 
in finite lattices, 65 
in infinite lattices, 219 
in a vibrating string, 206 

Triangle function 
convergence of Fourier series of, 165 
as initial elongation in elastic media, 208 
in an interval, 152 
Fourier series of, !52 

Triangle inequality, 8, 261 
Tukey, J. W., 125, 128 
Type of a function, 334 

Uncertainty relations, 328, 354, 392 
Unitary 

integral transform, 264, 375, 385 
matrices, as exponentiated hermitian 

matrices, 26 
matrices, group of, 13 
operators, 26, 37, 182, 184, 189, 264, 266, 

267 
transformations in phase space, 98 

Vector space 
axioms, 4, 140 
basis for, 5, 34, 37, 39, 52, 189, 223, 247, 

372 
coordinates, 7, 143, 182, 184, 262 
as a group, 14 
inner product for, 6, 141, 222, 227, 230, 

240, 247, 256, 353, 372 
of solutions of an equation: see Normal 

modes, Fundamental solutions 
Vectors 

angle between, 8 
polarization, 37 
positive definite, 20 

Velocity of wave propagation (see also 
Causality) 

effective, in infinite lattice, 216, 219 
in N-dimensional elastic-diffusive media, 

367 
in three-dimensional elastic media, 358 
in two-dimensional elastic media, 366 
in a vibrating string, 202 

Vibrating string, 201 

Wave equation 
in N dimensions, 355, 365 
in one dimension, 201 
in three dimensions, 356 
in two dimensions, 225, 230, 366 
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Wavelength 
of finite lattice normal modes, 63 
of infinite lattice normal modes, 218 

Waves: see Traveling waves, Normal modes, 
Signals, Filters, etc. 

Weber transforms, 371 
Wedge, electrostatic potential in, 351 
Weight function 

Bargmann's, 399 
for complex canonical transforms, 395 
for the finite interval Sturm-Liouville 

problem, 247 
Weyl commutation relation, 266 
Weyl group: see Heisenberg-Weyl 
White noise, 121 
Width of a function, 329 (see also Equivalent 

width, Dispersion) 
Whittaker function, 371 
Windows 

Hanning, 113 

Windows (cont.) 
side-lobes and leakage, 112 
time, 109 
triangular, 112 

Wronskian, 140 

Index 489 

Y-functions: see Neumann functions 

Zeros (see also Nodes) 
of the annular functions, 244 
of the Bessel function, 217, 231, 238, 241, 

246, 450 
of the Bessel function, asymptotic form, 

218, 238 
of Fourier series coefficients, 160 
of the harmonic oscillator wavefunctions, 

320 
trajectories of, 241 




